Laura Hansen, Ph.D.

Laura Hansen, Ph.D.
laura.hansen2@emory.edu

Laura Hansen received her BS in Bioengineering from the University of Pittsburgh and Ph.D. in Bioengineering from the Georgia Institute of Technology, where she studied the mechanics of blood vessel walls and changes associated with different disease states. She then completed her post-doctoral fellowship studying the RAGE receptor in peripheral artery disease at Emory University in Cardiology. She is currently an Assistant Professor in the Department of Medicine and Division of Cardiology and program faculty in Biomedical Engineering and Molecular and Systems Pharmacology. Hansen’s lab studies the interactions between satellite cells and the vasculature. Satellite cells are skeletal muscle progenitor cells that are known to play an important role in muscle repair after injury and adaptation to exercise. However, the Hansen lab focuses on a previously underexplored role of satellite cells in vascular growth. They have found that satellite cells, when activated, produced a number of chemoattractant growth factors that drive the migration of vascular smooth muscle and endothelial cells which in an important factor in the growth and development of blood vessels. This area is of particular interest in the context of peripheral artery disease, where patients suffer from ischemic tissue damage but treatment options are still limited. The lab has shown that ischemia stimulates satellite cells and are exploring ways to harness their angiogenic properties in vivo or through therapeutically delivered cells.

Assistant Professor
Associate Program Director of Academic Basic Research Scientist Pathway
Phone
404.712.2342
Office
Woodruff Memorial Research Building 319B
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience

Liang Han

Liang Han
lhan41@mail.gatech.edu
Associate Professor
Phone
404-385-5219
Office
EBB 3014
Additional Research
We use a combination of molecular, cellular, immunohistochemical, electrophysiological, genetic and behavioral approaches to understand how the nervous system receives, transmits and interprets various stimuli to induce physiological and behavioral responses. We are particularly interested in the basic mechanisms underlying somatosensation, including pain, itch and mechanical sensations. Somatosensation is initiated by the activation of the primary sensory neurons in dorsal root ganglia and trigeminal ganglia. We have discovered the molecular identity of itch-sensing neurons in the peripheral and provided novel insights into the mechanisms of itch sensation (Han et.al. 2013 Nature Neuroscience). We are currently investigating how chronic itch associated with cutaneous or systemic disorders is initiated and transmitted. We are also interested in the sensory innervation in the respiratory system. Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are leading causes of illness and significant public health burdens. We recently identified a subset of vagal sensory neurons mediating bronchoconstriction and airway hyperresponsiveness (Han et. al. 2017 Nature Neuroscience). We are investigating how the sensory innervations in the airway contribute to the pathogenesis of respiratory diseases.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

Brian Hammer

Brian Hammer
brian.hammer@biology.gatech.edu

Brian Hammer's lab studies molecular mechanisms important for microbial interactions. Bacteria are genetically encoded with regulatory networks to integrate external information that tailors gene expression to particular niches. Bacteria use chemical signals to orchestrate behaviors that facilitate both cooperation and conflict with members of the communities they inhabit. The group uses genetics and genomics, biochemistry, bioinformatics, and ecological approaches with a focus on the waterborne pathogen Vibrio cholerae.

Associate Professor
Phone
404-385-7701
Office
Cherry Emerson 223
Additional Research
Microbiology, quorum sensing, regulatory small RNAs, signal transduction, host-pathogen interactions, microbial biofilms. Our lab studies molecular mechanisms important for microbial interactions. Bacteria are genetically encoded with regulatory networks to integrate external information that tailors gene expression to particular niches. Bacteria use chemical signals to orchestrate behaviors that facilitate both cooperation and conflict with members of the communities they inhabit. We use genetics and genomics, biochemistry, bioinformatics, and ecological approaches with a focus on the waterborne pathogenVibrio cholerae.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

Frank Hammond III

Frank  Hammond III
frank.hammond@me.gatech.edu

Frank L. Hammond III joined George W. Woodruff George W. Woodruff School of Mechanical Engineering in April 2015. Prior to this appointment, he was a postdoctoral research affiliate and instructor in the Department of Mechanical Engineering at MIT and a Ford postdoctoral research fellow at the Harvard School of Engineering and Applied Sciences. He received his Ph.D. in 2010 from Carnegie Mellon University.

Assistant Professor, School of Mechanical Engineering
Director, The Adaptation Robotic Manipulation Laboratory
Phone
404.385.4208
Office
UA Whitaker Room 4102
Additional Research

Hammond's research focuses on the design and control of adaptive robotic manipulation (ARM) systems. This class of devices exemplified by kinematic structures, actuation topologies, and sensing and control strategies that make them particularly well-suited to operating in unstructured, dynamically varying environments - specifically those involving cooperative interactions with humans. The ARM device design process uses an amalgamation of bioinspiration, computational modeling and optimization, and advanced rapid prototyping techniques to generate manipulation solutions which are functionally robust and versatile, but which may take completely non-biomorphic (xenomorphic) forms. This design process removes human intuition from the design loop and, instead, leverages computational methods to map salient characteristics of biological manipulation and perception onto a vast robotics design space. Areas of interest for ARM research include kinematically redundant industrial manipulation, wearable robotic devices for human augmentation, haptic-enabled teleoperative robotic microsurgery, and autonomous soft robotic platforms.

IRI and Role
Bioengineering and Bioscience > Faculty
Robotics > Core Faculty
Robotics
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Bilal Haider

Bilal Haider
bilal.haider@bme.gatech.edu

Bilal Haider is an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. He received B.S. and M.S. degrees from the University of Illinois Urbana-Champaign and M.Phil. and Ph.D. degrees from Yale University. He joined the faculty at Georgia Tech after completing postdoctoral training at University College London.

Haider’s research measures, manipulates and deciphers neural circuit activity underlying normal and impaired visual perception, providing new insights into how the brain processes information and orchestrates behavioral actions.

Haider has received several prestigious awards, including from the Whitehall Foundation, Simons Foundation and the Alfred P. Sloan Foundation. His work has been published in leading journals, including NatureNature NeuroscienceNature Communications and Neuron.

Assistant Professor
Phone
404-385-4935
Office
UAW 3104
Additional Research
Bilal Haider’s research goal is to measure, manipulate, and decipher neural circuit activity underlying visual perception and visual attention. He received B.S. and M.S. degrees from the University of Illinois Urbana-Champaign, M. Phil. and Ph.D. degrees from Yale University, and postdoctoral training at University College London. His lab uses advanced electrical, optical, and behavioral technologies to reveal insights into the inner workings of the brain in real-time and with unprecedented resolution. By discovering mechanisms  of information processing in neural circuits, his research provides critical steps towards understanding impairments in many neurological disorders such as schizophrenia, epilepsy, and autism spectrum disorder. 
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering

Robert Guldberg

Robert Guldberg
robert.guldberg@me.gatech.edu

Robert E. Guldberg is the DeArmond Executive Director of the Phil and Penny Knight Campus for Accelerating Scientific Impact and Vice President of the University of Oregon. Guldberg’s research is focused on musculoskeletal mechanobiology, regenerative medicine, and orthopaedic medical devices. Over his 25+ year academic career, Dr. Guldberg has produced over 280 peer-reviewed publications, served as an advisor and board member for numerous biotechnology companies, and co-founded six start-ups. He was previously executive director of the Parker H. Petit Institute for Bioengineering and Bioscience at Georgia Tech from 2009-2018. In 2018, he was selected from a national search to lead the Knight Campus as its inaugural permanent Executive Director, where he has led the creation of its strategic plan, hired faculty into the campus’ first building opened in 2020, and launched the University of Oregon’s first ever engineering degree program. In 2021, he led the launch of Phase 2 of the Knight Campus development with the announcement of a second $500 million gift from Phil and Penny Knight. At the national level, Dr. Guldberg is past Chair of the Americas Chapter of the Tissue Engineering and Regenerative Medicine International Society (TERMIS-AM). He currently serves on the Executive Leadership Council of the Wu Tsai Human Performance Alliance, a $220 million global initiative to promote wellness and peak performance through scientific discovery and innovation. Dr. Guldberg is an elected fellow of TERMIS, the American Society of Mechanical Engineers (ASME), the American Institute for Medical and Biological Engineering (AIMBE), the Orthopaedic Research Society (ORS), and the National Academy of Inventors (NAI).

Vice President and Robert and Leona DeArmond Executive Director
Adjunct Professor
Phone
541-346-3110
Additional Research
Guldberg's research interests focus on musculoskeletal growth and development, functional regeneration following traumatic injury, and degenerative diseases, including skeletal fragility and osteoarthritis. His research is supported by the NIH, NSF, DoD, and several biotechnology companies and has resulted in over 150 book chapters and publications. Guldberg is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE) and holds several national leadership positions.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
University of Oregon > Phil and Penny Knight Campus for Accelerating Scientific Impact

James Gumbart

James Gumbart
gumbart@physics.gatech.edu

My lab is focused on understanding how proteins and other biological systems function at a molecular level. To probe these systems, we carry out molecular dynamics simulations, modeling biological behavior one atom at a time. The simulations serve as a "computational microscope" that permits glimpses into a cell's inner workings through the application of advanced software and high-powered supercomputers. We are particularly interested in how bacteria utilize unique pathways to synthesize proteins and insert them into both the inner and outer membranes, how they import nutrients across two membranes, and how their cell walls provide shape and mechanical strength.

Associate Professor
Phone
404-385-0797
Office
Howey W202
Additional Research
Computational simulations of complex biophysical phenomena involving proteins and other biomolecules.
IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Physics

Martha Grover

Martha Grover
martha.grover@chbe.gatech.edu

Grover’s research activities in process systems engineering focus on understanding macromolecular organization and the emergence of biological function. Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultimately yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable.

The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specifically those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, and estimation.

Professor, School of Chemical and Biomolecular Engineering
James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering
Member, NSF/NASA Center for Chemical Evolution
Phone
404.894.2878
Office
ES&T 1228
Additional Research

Colloids; Crystallization; Organic and Inorganic Photonics and Electronics; Polymers; Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultIMaTely yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable. The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specific those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, estIMaTion, and optimal control, monitoring and control for nuclear waste processing and polymer organic electronics

IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Energy > Research Community
Data Engineering and Science
Bioengineering and Bioscience
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering

Robert Gross

Robert Gross
rgross@emory.edu

Dr. Gross’s research interests include: restorative approaches (including cell and gene therapy) for Parkinson's disease and other neurodegenerative disorders; physiology of movement disorders (Parkinson's disease, tremor, dystonia); novel surgical techniques for epilepsy (e.g. deep brain stimulation, cell and gene therapy). In particular, he has been elucidating the role of axon guidance molecules in the development and reconstruction of the nigrostriatal pathway, which degenerates in P.D. This approach, which encompasses molecular and cellular engineering in combination with neurotransplantation, may be generally useful in reconstructive approaches for many types of nervous system degeneration and injury. 

In July of 2007, Dr. Gross, along with Steve M. Potter, Ph.D. of the Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, was the recipient of a prestigious grant from The Epilepsy Research Foundation (ERF) for translational research funding awards supporting innovative epilepsy products. The grant supports the development of a novel electrical stimulation approach that directly controls the activity of the brain to attain a more stable state from which seizures will not arise.

MBNA Bowman Chair & Professor
Director and Co-Founder, ENTICe
Director, Translational Neuro-Engineering Laboratory
Director, Stereotactic, Functional Neurosurgery & Epilespsy Surgery
Phone
404-727-2354
Office
Emory WMRB 6311
Additional Research
Neuromodulation using multielecrode arrays, closed loop control theory, and optogenetics for epilepsy and movement disorders. Computational modeling of epilepsy networks for model-based and non-model based feedback control of optogenetic and electrical neuromodulation. Neurorestoration using gene and cell-therapy based approaches for degenerative and injury conditions. The Translational Neuroengineering Research Lab uses neuromodulation for epilepsy using a combination of the following advanced techniques: 1) Multimicroelectrode electrical stimulation using novel parameters informed by optimization of input/output relationships (both model- and non-model based MIMO) using closed-loop control theory including adaptive learning and machine learning approaches; 2) Optogenetic activation and inhibition using all forms of available channels including step-function opsins. These approaches identify novel brain regions that have more widespread control and targets specific cell types for activation and inhibiton. Closed loop control using multielecrode arrays informs and controls neuromodulation. 3) Hardware independent 'luminopsins': novel gene therapy approaches combining bioluminescent proteins with optogenetic channels for hardware independent, widespread and activity-regulatable neuromodulation. We use a combination of in vitro models, animal models (mouse, rat, non-human primate) and human patients undergoing epilepsy and deep brain stimulation surgery as our experimental models. In addition, the laboratory has developed novel gene therapy vectors for neurorestoration targeting key pivotal proteins regulating axon outgrowth in regenerative situations, including for Parkinson's disease, spinal cord injury and retinal degeneration.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University > Department of Neurosurgery

Steven Goudy

Steven Goudy
steven.goudy@emory.edu

Steven L. Goudy, MD, MBA, professor of otolaryngology, director of pediatric otolaryngology at Emory University School of Medicine, founding director of the ACGME-accredited pediatric otolaryngology fellowship at Emory, and medical director of otolaryngology at Childrens Healthcare of Atlanta, is dedicated to providing top-level surgical care to the children of Georgia. 

His clinical practice focuses on maxillary development, Pierre Robin sequence, vascular malformations, and velopharyngeal insufficiency. Working closely with colleagues at the Centers for Disease Control and Prevention, Georgia Institute of Technology, and other local and state entities, Dr. Goudy and his team have developed novel and innovative solutions for care delivery that have brought value to families and improved treatment for patients. 

Dr. Goudys research is focused on defining the biologic processes that guide facial formation for the development of better approaches to regenerating damaged and deficient facial bone and improving wound healing after surgery or injury. Current research projects include an NIH-funded studies to develop immunological approaches to improving oral cavity wound healing, leveraging the oral microbiome to improve oral wound healing and a project to devise cranial facial bone regeneration techniques for pediatric bone replacement procedures. 

Dr. Goudy is dedicated to international service, particularly in the areas of surgical education and delivering surgical care to children with limited access to healthcare. He has traveled globally and performed mission work for more than 20 years in such countries as Guatemala and the Philippines, providing free surgical care to patients with cleft lip and cleft palate and engaging in medical education activities.

Associate Professor
Director, Division of Pediatric Otolaryngology Children's Healthcare of Atlanta
CEO, BeeClear LLC
Additional Research
Dr. Goudy’s lab focuses on craniofacial bone regeneration and the basic biologic mechanisms that control facial bone and soft tissue regeneration. He currently collaborates with investigators at Georgia Institute of Technology and is supported by the National Institutes of Health (NIH) and Children’s Research Trust.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University