Gary McMurray

Gary McMurray
gary.mcmurray@gtri.gatech.edu

After earning bachelor’s and master’s degrees in mechanical engineering from Georgia Tech, Gary McMurray interviewed for a number of jobs. Most were in the defense industry, and the job duties were very specific.

“I joke about one job that was to design fuel pumps for the aft section of cargo planes,” McMurray recalled. “I asked, ‘Well, what if I want to design fuel pumps for the front section?’ They said, ‘No. That’s a different skill set.’”

The job sounded too constraining and unappealing to McMurray, so he continued his job search, interviewing with the Georgia Tech Research Institute (GTRI) in 1989. He had been working in robotics, a relatively new field at the time.

“I was looking for something in robotics, and GTRI was trying to get into robotics,” he said. “They didn’t have anybody working in that field at all, so I was really the first person hired to work in that area. It gave me an opportunity to start from scratch and develop something unique and different. I really enjoyed that.”

Three decades later, McMurray still works at GTRI.

“I wear two hats in the organization,” he said. He is the division chief for the Intelligent Sustainable Technologies Division, and an associate director for the Institute for Robotics and Intelligent Machines (IRIM), working with director Seth Hutchinson.

The Intelligent Sustainable Technologies Division conducts research to improve the human condition through transforming the agricultural and food systems, sustainable use and access to energy and water, and improving workplace safety and pandemic response. IRIM is an umbrella under which robotics researchers, educators, and students from across campus can come together to advance a wide variety of robotics activities at the Institute.

The Intelligent Sustainable Technologies Division has approximately 36 research faculty and 40 students. The unit hires about 10% of all the students at GTRI and maintains close ties with the academic side of campus.

“One of the things I enjoy in my role as a division chief is the ability to set the vision and mission,” McMurray said. “We’re a little bit different from the rest of GTRI because we don’t do the Department of Defense work. We work a lot with the campus, but we also work with other universities on sustainability projects regarding food or energy. The projects have the potential to make a big impact. I describe it as having one foot on the basic research side and one foot on the applied side. We have master’s and Ph.D. students doing cutting-edge basic research, and we’re also building systems and applying research and deploying things into the field.”

The division’s food processing research includes improving yield, food quality, and food safety while minimizing the environmental impact by applying image processing, robotics, biosensors, and environmental treatment technologies. The division also conducts air quality research, including monitoring and reducing the effects of vehicular emissions.

So, what’s the connection between food processing and auto emissions?

“To solve problems in both of those areas we employ general research technologies — robotics, chemical and biological sensing, data analytics, machine learning, systems engineering, and then energy and materials,” McMurray said. “Approaches that work in traditional manufacturing may not work in the food industry. There is no CAD drawing for a boneless chicken breast or a chicken leg. Each one is different. It’s also wet, slippery, and could be spoiled.”

That’s where sensing and data analytics come into play. The same applies to analyzing vehicular emissions.

“When you look at food processing, our work really brings together all of these different skill sets. And then when you look at the data analytics side of air quality emissions, the team has the longest continuous set of data about air quality in the city. This has been the key database that the EPA uses for studying carbon emissions for automobiles,” McMurray said.

After more than 30 years at GTRI, McMurray still gets excited when a plan comes together.

“The most rewarding part of the work is when you can bring together the basic research and the applied, build a system that does something new and novel, put it into the field and test it, and have somebody come back and say, ‘That’s really cool. That worked.’”

Deputy Director; Institute for Robotics and Intelligent Machines
Division Chief | Robotics, Modeling, & Sensing for Agriculture; Georgia Tech Research Institute
Principal Research Engineer; Georgia Tech Research Institute
Phone
404.407.8844
Additional Research

Robotics; Modeling; Controls

IRI and Role
Robotics > Core Faculty
Robotics > Leadership
Robotics
GTRI
Geogia Tech Research Institute > Food Processing Technology Division

Anirban Mazumdar

Anirban Mazumdar
anirban.mazumdar@me.gatech.edu

Dr. Anirban Mazumdar joined Georgia Tech as an Assistant Professor in Mechanical Engineering in 2018. Dr. Mazumdar studies robot mobility with the goal of understanding and achieving agile, versatile, and efficient robot behaviors in unstructured environments. His previous experience includes a postdoctoral research position in the High Consequence Automation and Robotics Group at Sandia National Laboratories in Albuquerque, NM. He has broad experience with novel robotic systems including energy efficient bipedal robots, reconfigurable aerial vehicles, prosthetic devices, and relaxed stability mobile robots.

Assistant Professor; School of Mechanical Engineering
Director; Dynamic Adaptive Robotic Technologies (DART) Lab
Phone
404.385.8061
Office
Callaway Building 432
Additional Research

Mobile Robots; Human Performance; Autonomy

IRI and Role
Robotics > Core Faculty
Energy > Research Community
Robotics
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Ellen Yi Chen Mazumdar

Ellen Yi  Chen Mazumdar
ychen3161@gatech.edu

Dr. Mazumdar started at the Woodruff School of Mechanical Engineering at Georgia Tech in January of 2019 and currently has a courtesy appointment with the Guggenheim School of Aerospace Engineering. She graduated with her Ph.D. from Massachusetts Institute of Technology and completed a postdoctoral appointment at Sandia National Laboratories in the Diagnostic Science and Engineering group. Her research interests include the design of new diagnostic techniques and sensor systems for studying combustion, multiphase flows, hypersonic flows, and energetic materials. Her group utilizes new composite sensing materials, optical diagnostics, magnetostatics, and system identification methods to study these complex physical phenomena.

Assistant Professor; School of Mechanical Engineering
Director; The Sensing Technologies Lab
Phone
404.894.3242
Office
Love 229
Additional Research

new sensor systems diagnostic techniques; robotic; biomedical; hypersonics

IRI and Role
Robotics > Core Faculty
Energy > Research Community
Robotics
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Glenn Lightsey

Glenn Lightsey
glenn.lightsey@gatech.edu

E. Glenn Lightsey is the John W. Young Chair Professor in the Daniel Guggenheim School of Aerospace Engineering at Georgia Tech. He currently serves on the executive committee for the Space Research Initiative at Georgia Tech. Previously, he was the director of the Space Systems Design Lab from 2016-2023 and Center for Space Technology And Research at Georgia Tech from 2019-2023. 

Lightsey’s research program focuses on the technology of small satellites, including: guidance, navigation, and control systems; attitude determination and control; formation flying, satellite swarms, and cooperative control; proximity operations and unmanned spacecraft rendezvous; space based Global Positioning System receivers; radionavigation; propulsion; satellite operations; and space systems engineering. His group has built and operated several spacecraft for government sponsors. 

Lightsey has co-authored more than 180 technical articles and publications, including four book chapters. He is an AIAA Fellow and a Founding Member of the AIAA Small Satellite Technical Committee. He is Associate Editor-in-Chief of the Journal of Small Satellites. In the past he served as Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and Associate Editor of the AIAA Journal of Spacecraft and Rockets. Lightsey was previously employed at the University of Texas at Austin and NASA’s Goddard Space Flight Center.

John W. Young Chair Professor, Daniel Guggenheim School of Aerospace Engineering
Member, Space Research Initiative Steering Committee
Phone
404.385.4146
Office
ESM 110A/B
Additional Research

Small Satellites, Guidance and Control, and Spacecraft Technology.

IRI and Role
Robotics > Affiliate
Aerospace > Faculty
Aerospace > Leadership
Robotics
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Guggenheim School of Aerospace Engineering

Warren Lee

Warren Lee
warren.lee@gtri.gatech.edu
Research Scientist
Additional Research

Autonomy

IRI and Role
Robotics > Affiliated Faculty
Robotics
GTRI
Geogia Tech Research Institute > Aerospace, Transportation & Advanced Systems Laboratory

Shreyas Kousik

Shreyas Kousik
shreyas.kousik@me.gatech.edu

Shreyas Kousik is an assistant professor in the George W. Woodruff School of Mechanical Engineering. Previously, Shreyas was a postdoctoral scholar at Stanford University, working in the ASL under Prof. Marco. Kousik completed a postdoc with Prof. Grace Gao in the NAV Lab. He received his Ph.D. in Mechanical Engineering at the University of Michigan, advised by Prof. Ram Vasudevan in the ROAHM Lab and received his undergraduate degree in Mechanical Engineering at Georgia Tech, advised by Prof. Antonia Antoniou.

Kousik’s research is focused on guaranteeing safety in autonomy via collision avoidance methods for robots. His lab’s goal is to translate safety in math to safety on real robots by exploring ways to model uncertainty from autonomous perception and estimation systems and ensure that these models are practical for downstream planning and control tasks

Assistant Professor
IRI and Role
Data Engineering and Science > Faculty
Robotics > Core
Data Engineering and Science
Robotics
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering
Research Areas
Matter and Systems
  • Frontiers in Infrastructure

Zsolt Kira

Zsolt Kira
zkira@gatech.edu

I am an Assistant Professor at the School of Interactive Computing in the College of Computing. I am also affiliated with the Georgia Tech Research Institute and serve as an Associate Director of ML@GT which is the machine learning center recently created at Georgia Tech. Previously I was a Research Scientist at SRI International Sarnoff in Princeton, and before that received my Ph.D. in 2010 with Professor Ron Arkin as my advisor. I lead the RobotIcs Perception and Learning (RIPL) lab. My areas of research specifically focus on the intersection of learning methods for sensor processing and robotics, developing novel machine learning algorithms and formulations towards solving some of the more difficult perception problems in these areas. I am especially interested in moving beyond supervised learning (un/semi/self-supervised and continual/lifelong learning) as well as distributed perception (multi-modal fusion, learning to incorporate information across a group of robots, etc.).

Assistant Professor; School of Interactive Computing
Research Faculty; Georgia Tech Research Institute
Associate Director; Machine Learning @ GT
Director; RobotIcs Perception and Learning (RIPL) Lab
Office
CODA room S1181B
Additional Research

Machine Learning; Perception; Robotics; Artificial Intelligence

IRI and Role
Data Engineering and Science > Faculty
Robotics > Core Faculty
Data Engineering and Science
Robotics
University, College, and School/Department
Georgia Institute of Technology > College of Computing > School of Interactive Computing

David Jensen

Placeholder for headshot
david.jensen@gtri.gatech.edu
Research Scientist; Georgia Tech Research Institute
Additional Research

Autonomy

IRI and Role
Robotics > Affiliated Faculty
Robotics
GTRI
Geogia Tech Research Institute > Aerospace, Transportation & Advanced Systems Laboratory

Seth Hutchinson

Seth Hutchinson
seth@gatech.edu

I am currently Professor and KUKA Chair for Robotics in the School of Interactive Computing. I am also Emeritus Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

Professor and KUKA Chair for Robotics
Phone
404-385-7583
Office
Klaus Advanced Computing Building | Suite 1322
Additional Research

Robots never know exactly where they are, what they see, or what they're doing. They live in dynamic environments, and must coexist with other, sometimes adversarial agents. Robots are nonlinear systems that can be underactuated, redundant, or constrained, giving rise to complicated problems in automatic control. Many of even the most fundamental computational problems in robotics are provably hard. Over the years, these are the issues that have driven my group's research in robotics. Topics of our research include visual servo control, planning with uncertainty, pursuit-evasion games, as well as mainstream problems from path planning and computer vision.

IRI and Role
Bioengineering and Bioscience > Faculty
People and Technology > Affiliated Faculty
People and Technology
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Computing > School of Interactive Computing

David Hu

David Hu
hu@me.gatech.edu

David Hu is a fluid dynamicist with expertise in the mechanics of interfaces between fluids such as air and water. He is a leading researcher in the biomechanics of animal locomotion. The study of flying, swimming and running dates back hundreds of years, and has since been shown to be an enduring and rich subject, linking areas as diverse as mechanical engineering, mathematics and neuroscience. Hu's work in this area has the potential to impact robotics research. Before robots can interact with humans, aid in minimally-invasive surgery, perform interplanetary exploration or lead search-and-rescue operations, we will need a fundamental physical understanding of how related tasks are accomplished in their biological counterparts. Hu's work in these areas has generated broad interest across the fields of engineering, biology and robotics, resulting in over 30 publications, including a number in high-impact interdisciplinary journals such as Nature, Nature Materials, Proceedings of the National Academy of Sciences as well as popular journals such as Physics Today and American Scientist. Hu is on editorial board member for Nature Scientific Reports, The Journal of Experimental Biology, and NYU Abu Dhabi's Center for Center for Creative Design of Materials. He has won the NSF CAREER award, Lockheed Inspirational Young Faculty award, and best paper awards from SAIC, Sigma Xi, ASME, as well as awards for science education such as the Pineapple Science Prize and the Ig Nobel Prize. Over the years, Hu's research has also played a role in educating the public in science and engineering. He has been an invited guest on numerous television and radio shows to discuss his research, including Good Morning America, National Public Radio, The Weather Channel, and Discovery Channel. His ant research was featured on the cover of the Washington Post in 2011. His work has also been featured in The Economist, The New York Times, National Geographic, Popular Science and Discover His laboratory appeared on 3D TV as part of a nature documentary by 3DigitalVision, "Fire ants: the invincible army," available on Netflix.

Professor, George W. Woodruff School of Mechanical Engineering
Professor, School of Biology
Director, Hu Lab for Biolocomotion
Phone
404.894.0573
Office
LOVE 124
Additional Research

Fluid Mechanics: Fluid dynamics, solid mechanics, biomechanics, animal locomotion, and physical applied mathematics. Dr. David Hu's research focuses on fundamental problems of hydrodynamics and elasticity that have bearing on problems in biology. He is interested in the dynamics of interfaces, specifically those associated with fluid-solid and solid-solid interactions. The techniques used in his work include theory, computation, and experiment. He is also interested in pursuing biomimetic technologies based on nature's designs.

IRI and Role
Bioengineering and Bioscience > Faculty
Robotics > Core Faculty
Robotics
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering