Todd Sulchek

Todd Sulchek
todd.sulchek@me.gatech.edu

Todd Sulchek is an associate professor in Mechanical Engineering at Georgia Tech where he conducts fundamental and applied research in the field of biophysics. His research program focuses on the mechanical and adhesive properties of cell and biological systems and the development of microsystems to aid in their study. His research employs tools, including, MEMS, microfluidics, imaging, and patterning to understand or enable biological systems. His interests include cancer diagnostics, stem cell biomanufacturing, novel therapeutics, and ultracheap engineering tools. He is a member of the interdisciplinary Institute for Bioengineering and Bioscience. Dr. Sulchek also holds program faculty positions in Bioengineering and Biomedical Engineering and has a courtesy appointment in the School of Biology. He received his Ph.D. from Stanford in Applied Physics under Calvin Quate and received a bachelors in math and physics from Johns Hopkins. He was a postdoc and staff scientist at Lawrence Livermore National Lab. He joined Georgia Tech in 2008 as an Assistant Professor of Mechanical Engineering. He is a recipient of the NSF CAREER award, the BP Junior Faculty Teaching Excellence Award, the Lockheed Inspirational Young Faculty award, and the 2012 Petit Institute Above and Beyond Award. To date he has published 42 journal papers and has filed or been issued 7 patents. Prof. Sulchek is a strong supporter of undergraduate research, and he participates in a variety of undergraduate education activities including the Undergraduate Research Opportunities Program (UROP) and includes over 8 undergraduate authors in the past year.

Professor, Woodruff School of Mechanical Engineering
Appointments in Bioengineering, Biomedical Engineering, and Biology
Phone
404.385.1887
Office
Petit 2309
Additional Research

Biomedical Devices; bio-MEMS; biosensors; Drug Delivery; Advanced Characterization. Dr. Sulchek's research focuses primarily on the measurement and prediction of how multiple individual biological bonds produce a coordinated function within molecular and cellular systems. There are two complementary goals. The first is to understand the kinetics of multivalent pharmaceuticals during their targeting of disease markers; the second is to quantify the host cell signal transduction resulting from pathogen invasion. Several tools are developed and employed to accomplish these goals. The primary platform for study is the atomic force microscope (AFM), which controls the 3-D positioning of biologically functionalized micro- and nanoscale mechanical probes. Interactions between biological molecules are quantified in a technique called force spectroscopy. Membrane protein solubilized nanolipoprotein particles (NLPs) are also used to functionalize micro/nano-scale probes with relevant biological mediators. This scientific program requires the development of enabling instrumentation and techniques, which include the following: Advanced microscopy and MEMs; Nanomechanical linkers, which provide a convenient platform to control biomolecular interactions and study multivalent molecular kinetics; Biological mimetics, which provide a simple system to study cell membranes and pathogens. UltIMaTely, this work is used to optimize molecular drug targeting, improve chem/bio sensors, and develop more efficient pathogen countermeasures.

IRI and Role
Bioengineering and Bioscience > Faculty
Renewable Bioproducts > Faculty
Bioengineering and Bioscience
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Natalie Stingelin

Natalie  Stingelin
natalie.stingelin@mse.gatech.edu

Previously a professor of organic functional materials at the Department of Materials, Imperial College of London, Natalie Stingelin joined Georgia Tech in 2016. She focuses her research on the broad field of organic functional materials, including organic electronics; multifunctional inorganic/organic hybrids; smart, advanced optical systems based on organic matter; and bioelectronics. Associate Editor of the Journal of Materials Chemistry, she has published more than 130 papers and 6 issued patents. She is a co-investigator of the newly established EPSRC Centre for Innovative Manufacturing in Large Area Electronics, and she leads the EC Marie-Curie Training Network 'INFORM' that involves 11 European partners. She was awarded the Institute of Materials, Minerals & Mining's Rosenhain Medal and Prize (2014) and the Chinese Academy of Sciences (CAS) President's International Fellowship Initiative (PIFI) Award for Visiting Scientists (2015).

Professor, School of Chemical and Biomolecular Engineering
Phone
404.894.5192
Office
ES&T L1220
Additional Research

Organic electronics; Bioelectronics

IRI and Role
Renewable Bioproducts > Faculty
Energy > Research Community
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies
  • Human-Centric Technologies

Jake Soper

Jake Soper
jake.soper@chemistry.gatech.edu

Jake D. Soper is an Associate Professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. Prof. Soper’s research program is a hybrid of organometallic and inorganic coordination chemistry, at the forefront of an emerging area that uses redox-active ligand complexes for redox control in bond activation and functionalization reactions. His research focuses on the development of new homogeneous catalysts for selective transformations of small molecules, with particular emphasis on multielectron reactions relevant to organic synthesis and energy conversion and storage. Recent research accomplishments include the rational design of Earth-abundant metal catalysts to functionally mimic palladium in coupling catalysis cycles and the demonstration of redox-active ligand-meditated radical control in catalytic dioxygen activation and oxygen atom transfer reactions. This research has appeared in top peer-reviewed chemistry journals, including the Journal of the American Chemical Society and Inorganic Chemistry. Prof. Soper has also been an invited contributor to special issues of the European Journal of Inorganic Chemistry on Cooperative & Redox Non-Innocent Ligands in Directing Organometallic Chemistry and an Inorganic Chemistry Forum on Redox-Active Ligands, consisting of “papers from leading scientists on a multidisciplinary topic of growing interest. His recent development of redox-active ligand-mediated cobalt cross coupling catalysis was hailed as a “breakthrough in the field” in a 2011 Highlights feature in Angewandte Chemie International Edition. 

Prof. Soper earned a B.S. degree in chemistry from Western Washington University in 1998 and a Ph.D. in inorganic chemistry from the University of Washington in 2003. His graduate research was performed under the direction of Prof. James M. Mayer. He was subsequently an NIH Ruth L. Kirchstein Postdoctoral Fellow in the laboratories of Prof. Daniel G. Nocera at the Massachusetts Institute of Technology. In 2009 his independent research was honored with an NSF CAREER award and a DARPA Young Faculty Award (YFA). During his tenure at Georgia Tech, he has been invited to speak at 30 universities and 12 conferences, including four Gordon Research Conferences. He was the corresponding organizer of a symposium on modern redox-active ligand chemistry that was presented at the International Chemical Congress of Pacific Basin Societies, Pacifichem 2010. He created and directs the Georgia Tech–Westlake HS Energy Challenge Program, for which he received the 2010 Georgia Tech Faculty Award for Academic Outreach.

Associate Professor and Associate Chair for Operations
Additional Research
Solutions to outstanding problems in benchtop-scale organic synthesis, pharmaceuticals and commodity chemicals production, petroleum manufacturing, and energy generation and storage all hinge on the development of new methods to selectively transform the chemical bonds in small molecules. Because selectivity in redox bond activation and functionalization reactions typically derives from 1e– versus 2e– redox control, the function of most synthetically useful transition metal catalysts is to mediate 2e– bond making and breaking while suppressing potentially competing 1e– reactions.The Soper Group reengineers the way transition metal catalysts impart selectivity in redox bond activation and functionalization reactions. Instead of suppressing 1e– transfer, we use the capacity of some metal–ligand combinations to undergo reversible low-energy electron transfer for kinetic control in free radical reactions. We apply these methods for controlled radical chemistry to stoichiometric and catalytic reactions that are challenging or inaccessible using current methods. Recent successes include:Earth-Abundant Coupling Catalysis. Palladium-mediated 2e– oxidative addition and reductive elimination steps form the basis for numerous coupling cycles leading to selective assembly of C–C bonds. We discovered that redox-active aminophenol-derived ligands can be used to effect palladium-like 2e– oxidative addition and reductive elimination reactions at square planar later first row metal centers. These elementary reaction steps have been utilized for development of unusually well defined cycles for cobalt cross coupling of alkyl halides with alkyl- and arylzinc halides, as well as manganese and iron catalyzed aerobic coupling of aryl Grignard reagents.Metal Oxyl Radical Coupling. Recent theoretical studies suggest transition metal oxyl radicals containing unpaired electron density at oxo are critical precursors to O–O bond formation in water oxidation catalysts. Through the use of redox-active ligands, we have been able to generate a new class of well-defined coordination complexes that exhibit oxyl radical reactivity. We recently showed that a rhenium oxyl reacts with carbon free radicals to make C–O bonds at the oxo ligand, and we demonstrated that that radical character in the metal–oxo bond leads to kinetic reactivity that is not rationalized by ground-state thermodynamic considerations.O2 Activation and Aerobic Oxidations. A challenging step in many oxygenase-type redox catalysis cycles is bimetallic cleavage of the dioxygen O–O bond to generate two transition metal oxo complexes. This reaction is also relevant to energy conversion and storage in artificial photosynthetic schemes because the kinetics of O2 electroreduction at fuel cell anodes are often poor. We have demonstrated how the ability of redox-active ligands to undergo reversible 1e– transfer can be used to bring about bimetallic O2 homolysis by lowering the kinetic barrier to formation of 1e– reduced O2 complex intermediates. We are applying this method to the development of new aerobic oxidation catalysis cycles and electrode materials for efficient for O2 reduction.To accomplish these goals, researchers in the Soper Group are skilled in the synthesis and handling of air-sensitive materials. We use a variety of spectroscopic techniques to characterize reaction products and intermediates and to perform detailed mechanistic studies.
IRI and Role
Renewable Bioproducts > Faculty
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Chemistry & Biochemistry

Trisha Sisk

Trisha Sisk
trisha.sisk@gatech.edu

As Director of Activities for three of Tech's Interdisciplinary Research Institutes: the Strategic Energy Institute, the Renewable Bioproducts Institute, and the Brook Byers Institute for Sustainable Systems, I'll help bring together researchers from different disciplines to address topics of strategic importance. Each interdisciplinary research group mobilizes faculty to address the needs of external stakeholders (federal, state, and local entities, corporations, foundations, and communities) by fostering an Institute-wide innovation ecosystem around a specific focus.

Director of Activities & Engagement, BBISS, RBI, and SEI
IRI and Role
Sustainable Systems > Staff
Renewable Bioproducts > Staff
Energy > Staff
Sustainable Systems
Renewable Bioproducts
Energy > Leadership
University, College, and School/Department
Georgia Institute of Technology

Scott Sinquefield

Scott Sinquefield
Scott.Sinquefield@rbi.gatech.edu

Scott Sinquefield completed his Ph.D. in Chemical Engineering in 1998 at Oregon State University. He spent three years working with the Multi-Fuel Combustion Group at the Combustion Research Facility at Sandia National Labs (Livermore); where he performed the experimental portion of his thesis research. He joined the Chemical Recovery group at IPST in 1998 and was lead.engineer in the construction and operation of the Pressurize Entrained Flow Reactor facility. He now leads the research program on black liquor gasification. He has extensive experience in the design and construction of pilot research reactors and control systems. He also has expertise in boiler fire-side fouling and thermodynamic modeling of aqueous electrolyte systems.

Senior Research Engineer
Phone
(404) 385-0241
Additional Research
Gasification; Biofuels; Chemical Recovery; Environmental Processes; Separation Technologies
IRI and Role
Renewable Bioproducts > Faculty
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology

Preet Singh

Preet Singh
preet.singh@mse.gatech.edu

Prior to joining MSE in July 2003 Professor Singh was a faculty member in Corrosion and Materials Engineering Group at The Institute of Paper Science and Technology (IPST) since 1996.  While in IPST Singh worked on fundamental as well as applied research projects related to the corrosion problems in the pulp and paper industry. From 1990 to 1996, he was a Senior Research Associate at Case Western Reserve University, Cleveland, Ohio, working on various materials and corrosion related research projects, including damage accumulation in metal matrix composites (MMCs), Environmental sensitive fracture of Al-alloys MMCs, and High temperature oxidation of Nb/Nb5Si3 composites. He received the Alcan International's Fellowship in 1988-90 to work on "Effects of Low Melting Point Impurities on Slow Crack Growth in Al Alloys,"  He has published over 50 papers in reputed scientific journals and conference proceedings. He is active member of NACE, TMS, TAPPI and has co-organized a number of international symposiums.

Reliable performance of the materials is very important for any industrial process and especially for the chemical process industry for the manufacture of a high quality product. Material selection is generally based on the required material properties, low initial capital investment, and minimum maintenance. Changes in the process parameters to improve products can often lead to higher corrosion susceptibilities of the plant materials. Moreover, with increase in capital cost, there is pressure to extend the life of existing plant equipment beyond its original design life. Corrosion and Materials Engineers are also playing a key role in selecting, maintaining, and modifying materials for changing needs for every industry. Corrosion Science and Engineering research includes understanding the basic mechanisms involved in material degradation in given environments and using that knowledge to develop a mitigation strategy against environment-induced failures

Professor, School of Materials Science and Engineering
Associate Chair of Graduate Studies, School of Materials Science and Engineering
Phone
404.894.6641
Office
IPST 246
Additional Research

Composites; fracture and fatigue; stress corrosion; Materials Failure and Reliability; Biofuels; Chemical Recovery; Environmental Processes; Sustainable Manufacturing; Energy & Water; Corrosion & Reliability

IRI and Role
Renewable Bioproducts > Faculty
Energy > Research Community
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies

Carsten Sievers

Carsten Sievers
carsten.sievers@chbe.gatech.edu

Sievers’ research interests are in heterogeneous catalysis, reactor design, applied spectroscopy, and characterization and synthesis of solid materials. Combining these interests he seeks to develop processes for the production of fuels and chemicals. His research program combines fundamental and applied research.

In fundamental studies, a suite of analytical and spectroscopic techniques (e.g. IR, NMR) is used to gain knowledge on structure-reactivity relationships of heterogeneous catalysts. Moreover, surface reactions are studied on a molecular level to identify reaction pathways over different catalysts. Information obtained from these studies provides the foundation for designing innovative catalysts.

Applied studies focus specific catalytic processes. For these projects, continuously operated flow reactor systems are designed. Different catalysts are tested for reactivity, selectivity and stability and the influence of the operating conditions is investigated. Catalyst deactivation is studied in detail to develop suitable regeneration methods or to avoid deactivation entirely by improved catalyst design. Specific projects include hydrodeoxygenation of pyrolysis oils, selective hydration of polyols, conversion of sugars into lactic acid and ethylene glycol, and selective oxidation of methane.

An important goal of Sievers’ research is to enable technology for utilization of alternative resources in order to reduce the current dependence of oil. Among these biomass is a particularly promising candidate because it is renewable and can be produced CO2 neutral.

Sievers has contributed to 80 peer reviewed publications on heterogeneous catalysis in petroleum refining (isobutane/2-butene alkylation, fluid catalytic cracking, hydrotreating), alkane activation, supported ionic liquid as catalysts for fine chemical synthesis, and biomass processing.  He is Director and Past President of the Southeastern Catalysis Society, former Program Chair and Director of the ACS Division of Catalysis Technology & Engineering, former Director of the AIChE Division of Catalysis and Reaction Engineering, and Editor of Applied Catalysis A: General.

Professor, School of Chemical and Biomolecular Engineering
RBI Initiative Lead: Maximizing the Value of Products from Plastics Upcycling
Phone
404.385.7685
Office
ES&T 2218
Additional Research

Biomass; Biofuels; Catalysis; Advanced Characterization; Gasification; Biorefining; Lignin Upgrading; Catalysis; Energy & Water; Separation Technologies; Chemical Feedstocks; Sugars; Lignin & Hemicellulose

IRI and Role
Renewable Bioproducts > Faculty
Renewable Bioproducts > Leadership
Energy > Hydrogen Group
Energy > Research Community
Sustainable Systems
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering
Research Areas
Sustainable Systems
  • Resource and Materials Use

Meisha Shofner

Meisha Shofner
meisha.shofner@mse.gatech.edu

Meisha L. Shofner is a professor in the School of Materials Science and Engineering at Georgia Institute of Technology, joining the faculty following post-doctoral training at Rensselaer Polytechnic Institute. She received her B.S. in Mechanical Engineering from The University of Texas at Austin and her Ph.D. in Materials Science from Rice University. Prior to beginning graduate school, she was employed as a design engineer at FMC in the Subsea Engineering Division, working at two plant locations (Houston, Texas and the Republic of Singapore), and she is a registered Professional Engineer in Georgia.

Shofner’s research area is processing-structure-property relationships of polymers and composites. Specifically, she designs processing strategies to attain hierarchical structures in these materials to improve properties and has discovered scalable processing methods to produce auxetic structures and tensegrity-inspired structures. Additionally, she works with bioderived materials to produce composites with reduced environmental impact.  

Professor, School of Materials Science and Engineering
Phone
404.385.7216
Office
MRDC 4409
Additional Research

Biomolecular-Solids; Biomaterials; Composites; Polymers; Nanomaterials; Biofuels; Structure-property relationships in polymer nanocomposite materials; producing structural hierarchy in these materials for structural and functional applications.

IRI and Role
Manufacturing > Affiliated Faculty
Data Engineering and Science > Affiliated Faculty
Renewable Bioproducts > Faculty
Energy > Research Community
Manufacturing
Data Engineering and Science
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Tabassum Shah

Tabassum Shah
tabassum.shah@rbi.gatech.edu
Research Coordinator I
Phone
(404) 894-9710
Additional Research
Sugars; Lignin & Hemicellulose
IRI and Role
Renewable Bioproducts > Affiliated Faculty
Renewable Bioproducts