Valeria Milam

Valeria Milam
valeria.milam@mse.gatech.edu

Valeria Tohver Milam joined the School of Materials Science and Engineering at Georgia Institute of Technology as an assistant professor in July 2004. She received her B.S. in Materials Science and Engineering with Honors from the University of Florida in 1993. After completing her M.S. degree (1997) in MSE at the University of Illinois, Urbana-Champaign, she interned at Sandia National Laboratories. She then completed her doctoral work at UIUC studying the phase behavior, structure and properties of nanoparticle-microsphere suspensions. Experimental results suggested a novel colloidal stabilization mechanism known as nanoparticle “haloing” in which otherwise negligibly charged microspheres become effectively charge-stabilized by their surrounding shell of highly charged nanoparticles.

After finishing her Ph.D. in 2001, her postdoctoral studies at the University of Pennsylvania focused on DNA-mediated colloidal assembly. The degree of specific attraction between DNA-grafted microspheres was found to vary with sequence length, sequence concentration and ionic strength. A variety of structures such as colloidal chains, rings and satellites were formed by varying the particle size ratio and suspension composition.

Associate Professor, School of Materials Science and Engineering
Phone
404.894.2845
Office
MoSE 3100L
Additional Research

Bio-Inspired Materials; Polymers; Nanostructured Materials; Colloids; Drug Delivery

IRI and Role
Bioengineering and Bioscience > Faculty
Matter and Systems > Affiliated Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Frontiers in Infrastructure
  • Computing and Communication Technologies

Mark Losego

Mark Losego
losego@gatech.edu

Mark D. Losego is an associate professor in the School of Materials Science and Engineering at Georgia Tech. The Losego research lab focuses on materials processing to develop novel organic-inorganic hybrid materials and interfaces for microelectronics, sustainable energy devices, national security technologies, and advanced textiles. The Losego Lab combines a unique set of solution and vapor phase processing methods to convert organic polymers into organic-inorganic hybrid materials, including developing the science to scale these processes for manufacturing.  Prof. Losego’s work is primarily experimental, and researchers in his lab gain expertise in the vapor phase processing of materials (atomic layer deposition, physical vapor deposition, vapor phase infiltration, etc.), the design and construction of vacuum equipment, interfacial and surface science, and materials and surface characterization. Depending on the project, Losego Lab researchers explore a variety of properties ranging from electrical to electrochemical to optical to thermal to sorptive to catalytic and more.

Associate Professor, MSE Faculty Fellow, and Dean’s Education Innovation Professor
Phone
404.385.3630
Additional Research

Catalysis; Cellulose Nanomaterials; Coatings; Coatings and Barriers; Corrosion & Materials Engineering; Corrosion and Reliability; Energy; Films and Coatings; Microporous Materials; Nanocellulose Applications; Nanomaterials; New Materials; Polymers; Vapor Phase Processing

IRI and Role
Renewable Bioproducts > Affiliated Faculty
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Frontiers in Infrastructure
  • Computing and Communication Technologies

Meilin Liu

Meilin Liu
meilin.liu@mse.gatech.edu

Liu's primary interests lie in fundamental understanding of the effect of structure, defects, and microstructure on transport and electrical properties of surfaces and interfaces. In particular, he is interested in developing new materials for energy storage and conversion, for chemical sensing, and for hydrogen production and separation In addition, he is interested in mathematical modeling of mass and charge transport in solid electrochemical systems and polarization at interfaces.

Liu's current research activities include (1) in-situ characterization of gas-solid interactions using FTIR/Raman spectromicroscopy, impedance spectroscopy, and mass spectrometry; (2) study of transport phenomena and kinetics in ionic and electronic conductors and the effect of imperfections on electrophysical and electrochemical properties; (3) fabrication and characterization of ceramic membranes, thin films, and coatings; mesoporous and nanostructured electrodes and interfaces; and solid-state ionic devices; and (4) development of new materials for high-selectivity gas sensors, for high-energy-density batteries, for low-temperature solid-state fuel cells, and for high temperature PEM fuel cells.

Liu holds 20 U.S. patents and a number of patent applications, co-edited seven proceedings volumes, and published more than 250 papers in reputed journals, book chapter, and conference proceedings. He has also been the co-organizer of 11 international symposia/workshops on materials for energy storage and conversion devices, sensors, and gas separation.

Liu is a fellow of the American Ceramic Society (ACerS) and the Electrochemical Society (ECS). He is the recipient of a Ross Coffin Purdy Award (American Ceramic Society, 2010), an NASA Tech Brief Award (2007), an invited participant, US-Japan Frontiers of Engineering (National Academy of Engineering, 2007); a Crystal Flame Innovation Award in Research (FuelCell South, 2005); an Outstanding Achievement in Research Program Development Award (Georgia Tech, 2003), A Sustained Research Award (Sigma Xi, 2003), a senior Teaching Fellow (Georgia Tech, 2002), a Best Faculty Paper Award (Sigma Xi, 2001), an Outstanding Faculty Research Author Award (Georgia Tech, 1999), an invited participant, Frontiers of Engineering (National Academy of Engineering, 1997), a Best MS Thesis Advisor Award (Sigma Xi, 1996), a National Young Investigator Award (NSF, 1993-98), and a Scholastic Achievement Award (Golden Gate Chapter of ASM, 1986).

Regents' Professor, School of Materials Science and Engineering
Associate Chair, Academics, School of Materials Science and Engineering
Co-Director, Center for Innovative Fuel Cell and Battery Technologies
Phone
404.894.6114
Office
Love 258
Additional Research

Energy Storage; Energy Conversion; Fuel Cells; Batteries; Thin Films; Hydrogen

IRI and Role
Energy > Hydrogen Group
Energy > Research Community
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Zhiqun Lin

Zhiqun Lin
zhiqun.lin@mse.gatech.edu

Zhiqun Lin is currently Professor of Materials Science and Engineering at the Georgia Institute of Technology. His research focuses on nanostructured functional materials (NanoFM). An extensive list of materials currently under investigation in his group includes polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanoparticles (nanorods), hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids.

The goal of his research is to understand the fundamentals of these nanostructured materials. His group intends to create these nanostructures in a precisely controllable manner and to exploit the structure-property relationships in the development of multifunctional materials for potential use in energy conversion (e.g., solar cells, photocatalysis, and hydrogen generation) and storage (e.g., batteries), electronics, optics, optoelectronics, magnetic materials and devices, nanotechnology, and biotechnology.

Professor, Materials Science and Engineering
Phone
404.385.4404
Office
MOSE 3100K
Additional Research

Nanocomposites; Polymeric Composites; Polymers; Nanocrystals; Self-Assembly; Solar Cells; Batteries; Composites; Nanostructures; Electronics; Energy Storage

IRI and Role
Manufacturing > Affiliated Faculty
Renewable Bioproducts > Affiliated Faculty
Energy > Research Community
Manufacturing
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Mo Li

Mo Li
mo.li@mse.gatech.edu

Professor Mo Li received his Ph.D. in applied physics in 1994 from California Institute of Technology under the supervision of Professor William L. Johnson and Professor William A. Goddard.

After a brief staying as a postdoctoral fellow at Caltech and the Argonne National Laboratory, he joined Morgan Stanley & Co. in New York. He came back to academia in 1998. From 1998 to 2001 he was an assistant professor at the Johns Hopkins University. Currently he is a professor at the Georgia Institute of Technology.

Professor, School of Materials Science and Engineering
Director, Computational Materials Science Group
Phone
404.385.2472
Office
Love 365
Additional Research

computational mechanics; micro and nanomechanics; Nanomaterials; Materials In Extreme Environments

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Josh Kacher

Josh Kacher
josh.kacher@mse.gatech.edu

Josh Kacher joined Georgia Tech’s Materials Science and Engineering department as an assistant professor in Fall of 2015. Prior to his appointment, he was a postdoctoral scholar at the University of California, Berkeley. There, he worked in collaboration with General Motors to understand the Portevin-le Chatelier effect in Al-Mg and with the navy to develop novel rhenium-replacement alloys. His research approach centered on applying in situ TEM deformation to understand the influence of local chemistry on the behavior of defects such as dislocations and twins. This was coupled with mesoscale characterization of the defect state using EBSD for multiscale characterization of the deformation processes.

His Ph.D. and Masters work similarly focused on applying multiscale electron microscopy techniques to understanding defect behavior in a variety of systems such as ion-irradiated stainless steels, materials at elevated temperatures, and Mg alloys for light-weight alloy development.

Associate Professor, School of Materials Science and Engineering
Phone
404.894.2781
Office
Love 282
Additional Research

Materials In Extreme Environments; corrosion; deformation and degradation; Advanced Characterization; micro and nanomechanics; fracture and fatigue

IRI and Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies
  • Computing and Communication Technologies

Sundaresan Jayaraman

Sundaresan Jayaraman
sundaresan.jayaraman@mse.gatech.edu

Sundaresan Jayaraman is a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. He is also the Founding Director of the Kolon Center for Lifestyle Innovation established at Georgia Tech in October 2016. A pioneer in bringing about convergence between textiles and computing, Jayaraman’s research has led to the paradigm of “Fabric is the Computer.” He is a leader in studying and defining the roles of engineering design, manufacturing and materials technologies in public policy for the nation. 

Jayaraman and his research students have made significant contributions in the following areas: (i) Smart Textile-based Wearable Systems; (ii) Computer-aided Manufacturing, Automation and Enterprise Architecture Modeling; (iii) Engineering Design and Analysis of Intelligent Textile Structures and Processes; (iv) Design and Development of Knowledge Based Systems (KBS) for textiles and apparel; and (v) Design and Development of Respiratory Protection Systems. His group's research has led to the realization of the world's first Wearable Motherboard™, also known as the “Smart Shirt” (www.smartshirt.gatech.edu). This invention was featured in a Special Issue of LIFE Magazine entitled Medical Miracles for the New Millennium (Fall 1998) as One of the 21 Breakthroughs that Could Change Your Life in the 21st Century. The first Smart Shirt is now part of the Archives of the Smithsonian Museum in Washington, DC. 

Prior to Georgia Tech, Jayaraman had the privilege of working with Dan Bricklin and Bob Frankston, the Co-Creators of the world’s first spreadsheet – VisiCalc®. VisiCalc was the first “killer app” that transformed the computing industry by bringing computing to the masses through the proliferation of personal computers. During his PhD, he was involved in the design and development of TK!Solver, the world’s first equation-solving program from Software Arts, Inc., Cambridge, MA. He worked there as a Product Manager and then at Lotus Development Corporation (makers of 1-2-3®) in Cambridge, MA. 

Jayaraman is a recipient of the 1989 Presidential Young Investigator Award from NSF for his research in the area of computer aided manufacturing and enterprise architecture. In September 1994, he was elected a Fellow of the Textile Institute, (UK). His publications include a textbook on computer-aided problem solving published by McGraw-Hill in 1991, ten U.S. patents, and numerous refereed journal papers, and book chapters. As Principal Investigator, he has received nearly $16Million in research funding from a variety of sources including NSF, DARPA, DoD, NIST, CDC, and industry. Dr. Jayaraman served as Technical Editor, Information Technology, for ATI Magazine (now Textile World) from 1995-2003. From May 2000 to October 2004, he was an Editor of the Journal of the Textile Institute and is currently on the Editorial Advisory Board.

Jayaraman is a founding member of the IOM Standing Committee on Personal Protective Equipment in the Workplace (2005-2013). From December 2008 to February 2011, he served on the Board on Manufacturing and Engineering Design of the National Academies. In February 2011, he became a founding member of the National Materials and Manufacturing Board of the National Academies. He has also served on nine Study Committees for the National Academy of Medicine (formerly Institute of Medicine) and the National Research Council of the National Academies. He is also a founding member of the IEEE Technical Committee on Biomedical Wearable Systems (2004 –2008). In October 2000, Jayaraman received the Georgia Technology Research Leader Award from the State of Georgia. He received The 2018 Textile Institute Research Publication Award for the most outstanding paper published in 2018 in the Journal of the Textile Institute. In December 2019, he received the Inaugural Distinguished Alumni Award from A.C. College of Technology, Chennai, India.

Professor, School of Materials Science and Engineering
Phone
404.894.2461
Office
MRDC 4411
Additional Research

Biomedical Devices; wearable devices; smart textiles; Innovation; Industrial Engineering

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Seung Soon Jang

Seung Soon Jang
SeungSoon@mse.gatech.edu

Seung Soon Jang joined the School of Materials Science and Engineering at the Georgia Institute of Technology in July 2007. Jang worked at Samsung Electronics and the Materials and Process Simulation Center (MSC) at CalTech performing various researches in nanoelectronics, fuel cell, and interfacial systems as a director of Supramolecular Technology for six years.

His research interest includes computations and theories to characterize and design nanoscale systems based on the molecular architecture-property relationship, which are especially relevant to molecular electronics, molecular machines, fuel cell technology and biotechnology.

Professor, School of Materials Science and Engineering
Director, Computational NanoBio Technology Lab
Phone
404.385.3356
Office
Love 351
Additional Research

Jang's research interest is to characterize and design nanoscale systems based on the molecular architecture-property relationship using computations and theories, which are especially relevant to designing new biomaterials for drug delivery and tissue engineering. Currently, he is focusing on 1) NanoBio-mechanics for DNA, lipid bilayer, and hydrogel systems; 2) Molecular interaction of Alzheimer proteins with various small molecules. Dr. Jang is also interested in various topics such as nanoelectronics, nanostructured energy technologies for fuel cell, battery and photovoltaic devices.;Computational mechanics; Nanostructured Materials; Polymeric composites; Biomaterials; Fuel Cells; Delivery and Storage

IRI and Role
Bioengineering and Bioscience > Faculty
Energy > Hydrogen Group
Energy > Research Community
Bioengineering and Bioscience
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Guoxiang (Emma) Hu

Guoxiang (Emma) Hu
emma.hu@mse.gatech.edu

Emma Hu joins the School of Materials Science and Engineering at Georgia Tech as an assistant professor. Her group will use quantum mechanical modelling combined with materials informatics to understand the underlying mechanisms of energy harvesting and utilization at the atomic level, and reveal structure-property-performance relationships for knowledge/data-driven materials design.

Her research seeks to accelerate the discovery of materials with complex properties to solve time-sensitive problems involving green energy production and climate remediation.

Emma obtained her Ph.D. in Physical Chemistry in 2018 from the University of California, Riverside, and her B.S. in Chemistry in 2013 from University of Science and Technology of China. She then spent two years as a postdoctoral scholar in the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory from 2018-2020. Before joining Georgia Tech, Emma was an Assistant Professor at City University of New York from 2020-2023.

Assistant Professor
Office
RBI 275
IRI and Role
Energy > Faculty
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Arun Gokhale

Arun Gokhale
arun.gokhale@mse.gatech.edu

Arun M. Gokhale is a Professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. Prior to joining the Georgia Tech faculty in 1989, Gokhale’s work history encompassed fifteen years of teaching, and industrial research and development experience. Gokhale holds a B.Tech (1970) and M.Tech (1972) in Metallurgical Engineering from the Indian Institute of Technology, and a Ph.D. in Materials Science and Engineering (1977) from the University of Florida. 

Gokhale’s research interests include quantitative fractography, damage evolution in composites, microstructural evolution during deformation and fracture, with primary focus on quantitative description of microstructure and its evolution during materials processes.

Gokhale has written 200 papers in reputed scientific journals and conference proceedings. He has given more than 100 invited lectures in the national and international conferences and seminars. He is a Fellow of ASM International. He served as Vice President of International Society for Stereology (1992-96). He has served on the editorial boards of several international journals.

Professor, School of Materials Science and Engineering
Phone
404.894.2887
Office
Love 265
Additional Research

Composites; computational mechanics; deformation and degradation; micro and nanomechanics

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering