Mijin Kim

Mijin Kim
mkim445@gatech.edu

Mijin Kim is an assistant professor in the School of Chemistry and Biochemistry at Georgia Tech. Her research program is focused on the development and implementation of novel nanosensor technology to improve cancer research and diagnosis. The Kim Lab combines nanoscale engineering, fluorescence spectroscopy, machine learning approaches, and biochemical tools (1) to understand the exciton photophysics in low-dimensional nanomaterials, (2) to develop diagnostic/nano-omics sensor technology for early disease detection, and (3) to investigate biological processes with focusing problems in lysosome biology and autophagy. For her scientific innovation, Kim has received multiple recognitions, including being named as one of the STAT Wunderkinds and the MIT Technology Review Innovators Under 35 List.

Assistant Professor, School of Chemistry and Biochemistry
IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience

Pinar Keskinocak

Pinar Keskinocak
pk50@mail.gatech.edu

Pinar Keskinocak is the H. Milton and Carolyn J. Stewart School Chair and Professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech. She is also co-founder and director of the Center for Health and Humanitarian Systems. Previously, she served as the College of Engineering ADVANCE Professor and as interim associate dean for faculty development and scholarship. Prior to joining Georgia Tech, she worked at IBM T.J. Watson Research Center. She received her Ph.D. in Operations Research from Carnegie Mellon University, and her M.S. and B.S. in Industrial Engineering from Bilkent University.

Keskinocak's research focuses on the applications of operations research and management science with societal impact, particularly health and humanitarian applications, supply chain management, and logistics/transportation. Her recent work has addressed infectious disease modeling (including Covid-19, malaria, Guinea worm, pandemic flu), evaluating intervention strategies, and resource allocation; catch-up scheduling for vaccinations; hospital operations management; disaster preparedness and response (e.g., prepositioning inventory); debris management; centralized and decentralized price and lead time decisions. She has worked on projects with companies, governmental and non-governmental organizations, and healthcare providers, including American Red Cross, CARE, Carter Center, CDC, Children’s Healthcare of Atlanta, Emory University, and Intel Corporation.

She is an INFORMS Fellow and currently serves as the president of INFORMS. Previously she served as the Secretary of INFORMS, a department editor for Operations Research (Policy Modeling and Public Sector area), associate editor for Manufacturing & Service Operations Management, and INFORMS Vice President of Membership and Professional Recognition. She is the co-founder and past-president of INFORMS Section on Public Programs, Service, and Needs, and the president of the INFORMS Health Applications Society.

H. Milton and Carolyn J. Stewart School Chair
Professor in the H. Milton Stewart School of Industrial and Systems Engineering
Phone
404-894-2325
Office
Groseclose 422
Additional Research

Health systems; humanitarian systems; modeling; simulation; analytics and machine learning; Research and Management Science; Health and Humanitarian Applications; Supply Chain Management; Auctions/Pricing; Due Date/Lead-Time Decisions; Production Planning/Scheduling; Logistics/Transportation

IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
People and Technology > Affiliated Faculty
Data Engineering and Science
People and Technology
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Industrial Systems Engineering

Melissa Kemp

Melissa Kemp
melissa.kemp@bme.gatech.edu

Melissa Lambeth Kemp received her B.S. in Nuclear Engineering from MIT and her Ph.D. in Bioengineering from University of Washington. Dr. Kemp joined the faculty at Georgia Tech in 2006 after completing postdoctoral training at MIT. Her expertise is in computational modeling of metabolism and signal transduction, as well as developing statistical modeling tools to examine network relationships in high-dimension datasets. One major aspect of her research program linking ROS – the byproducts of aerobic metabolism – to the fundamental way that cells interpret instructions from their environment, their neighbors, and their own genetic blueprint. Specific applications of her diverse work include systems modeling of transient phosphatase oxidation of kinase cascades, patient-specific differences in cytotoxicity to redox-cycled chemotherapeutics and radiation, and the coordination of oxidative metabolism with epithelial-to-mesenchymal transition. Her research program also includes a component of developing high-throughput screening methods for assaying cue-signal-response relationships in cells and analytical tools for single cell gene expression. 

Dr. Kemp currently serves as the Research Director of the multi-site NSF Engineering Research Center “Cell Manufacturing Technologies”. In her former role as Associate Director of the NSF Science and Technology Center “Emergent Behavior of Integrated Cellular Systems”, she spearheaded the multi-site center’s computational activities by developing agent-based models of context-dependent cellular decisions to generate new hypotheses of intercellular communication in pluripotent stem cell differentiation and emergent patterning; this work continues currently in quantifying organizational principles and spatial relationships in iPSC-derived tissues from multi-omics data. Dr. Kemp’s career honors include a Whitaker Graduate Fellowship, Merck/CSBi postdoctoral fellowship, Georgia Cancer Coalition Distinguished Scholar, NIH New Innovator Award, and the CSB2 Prize for Innovative Measurement Methods from the Council for Systems Biology in Boston.

Professor
Georgia Cancer Coalition Distinguished Cancer Scholar
Phone
404-385-6341
Office
EBB 3019
Additional Research
Systems biology, computational modeling, redox metabolism and signal tranduction.The Kemp Lab is focused on understanding how metabolism influences the decisions that cells make. Aging, stem cell differentiation, cancer metastasis, and inflammation rely on progressive changes in metabolism resulting in increased levels of reactive oxygen species. Collectively, the accumulation of these molecules is known as cellular oxidation, and pathological levels are referred to as oxidative stress. Our lab develops systems biology tools for investigating how cellular oxidation influences cellular fate and interpretation of cues from the extracellular environment. We are interested in the collective behavior that arises during stem cell differentiation, immune cell responses, or drug treatments from metabolic diversity in individual cells. Because of the numerous biochemical reactions involved, we develop computational models and analytical approaches to understand how complex protein network properties are influenced by redox-sensitive proteins; these proteins typically have reactive thiol groups that are post-translationally regulated in the presence of reactive oxygen species to alter activity and/or function. Experimentally, we develop novel high-throughput single cell techniques for the detection and quantification of intracellular oxidation.
IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering

Shella Keilholz

Shella Keilholz
sk233@mail.gatech.edu

Dr. Keilholz has been working in preclinical imaging for more than twenty years, with the goal of using animal models to improve the analysis of human MRI imaging. Her research uses multimodal approaches to extract information about neural dynamics from functional neuroimaging studies.

Associate Professor
Phone
404-727-2433
Office
Emory, HSRB W230
Additional Research
The goal of my research is to develop a method for mapping spontaneous activity throughout the whole brain with high spatial and temporal resolution, with the intention of using this technique to characterize alterations in dynamic neural activity linked to dysfunction and to identify potential targets for intervention. My primary expertise is in fMRI and functional connectivity mapping, and since my lab was established at Emory, we have focused on obtaining information about the dynamic activity of functional networks from the BOLD signal. Despite BOLD's indirect relationship to neural signals, evidence is growing that the BOLD fluctuations provide information about behaviorally relevant network activity. We take a two-pronged approach to the problem, combining MRI with direct neural measures like electrophysiology and optical imaging in the rodent, or with EEG and behavioral outputs in the human. Our effort to understand the relationship between BOLD and electrical or optical recordings (very different signals that cover very different spatial and temporal scales) has led us to develop new approaches to data analysis that include spectral, spatial, and temporal information. To better understand the large-scale dynamics of brain activity, we have become fluent in network modeling, nonlinear dynamics, and machine learning.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering

William Brent Keeling

William Brent Keeling
brent.keeling@emory.edu

Dr. Keeling earned his medical degree at the University of Louisville in 2001, did his general surgery residency at the University of South Florida School of Medicine from 2001-2008, and completed his cardiothoracic surgery fellowship at Emory in 2011. Dr. Keeling directs the cardiothoracic surgery program at Grady Memorial Hospital and provides clinical service at Emory University Hospital Midtown. His clinical interests include reoperative cardiac surgery, valve repair and thoracic aortic pathology, and his research focuses on clinical trials as well as data-driven investigations of adult cardiac surgical sub-populations.

Assistant Professor of Surgery, Division of Cardiothoracic Surgery
Chief, Cardiothoracic Surgery Service, Grady Memorial Hospital
Phone
404-616-0539
Additional Research
Targeted clinical investigations of adult cardiac surgical sub-populations.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University > Department of Surgery

Yonggang Ke

Yonggang Ke
yonggang.ke@emory.edu

Yonggang Ke's research is highly interdisciplinary combining chemistry, biology, physics, material science, and engineering. The overall mission of his research is to use interdisciplinary research tools to program nucleic-acid-based "beautiful structures and smart devices" at nanoscale, and use them for scientific exploration and technological applications. Specifically, his team focuses on (1) developing new DNA self-assembly paradigms for constructing DNA nanostructures with greater structural complexity, and with controllable sizes and shapes; (2) developing new imaging or drug delivery systems based on DNA nanostructuresl; (3) exploring design of novel DNA-based nanodevices for understanding basic biological questions at molecular level; (4) developing DNA-templated protein devices for constructing artificial bio-reactors.

For cancer-related research/application, Ke will focus on using DNA/RNA nanostructures as drug delivery vehicles. He is also interested in using DNA/RNA nanostructures to study cancer cell biology at molecular level.

Assistant Professor, Wallace H. Coulter Department of Biomedical Engineering
Phone
404.712.2712
Office
Emory HSRB E186
Additional Research

Molecular engineeringNucleic acid self-assemblyTargeted imaging and delivery

IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering

Peter Kasson

Peter Kasson
peter.kasson@chemistry.gatech.edu

Peter Kasson is an international leader in the study of biological membrane structure, dynamics, and fusion, with particular application to how viruses gain entry to cells. His group performs both high-level experimental and computational work – a powerful combination that is critical to advancing our understanding of this important problem. His publications describe inventive approaches to the measurement of viral fusion rates and characterization of fusion mechanisms, and to the modeling of large-scale biomolecular and lipid assemblies. He has applied these insights to the prediction of pandemic outbreaks and drug resistance, with particular attention to Zika, SARS-CoV-2, and influenza pathogens in recent years. See https://kassonlab.org/ for more information.

Professor of Chemistry and Biomedical Engineering
IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience

Lynn Kamerlin

Lynn Kamerlin
skamerlin3@gatech.edu

Lynn Kamerlin received her Master of Natural Sciences from the University of Birmingham (UK), in 2002, where she remained to complete a PhD in Theoretical Organic Chemistry under the supervision of Dr. John Wilkie (awarded 2005). Subsequently, she was a postdoctoral researcher in the labs of Stefan Boresch at the University of Vienna (2005-2007), Arieh Warshel at the University of Southern California (2007-2009, Research Associate at the University of Southern California in 2010) and Researcher with Fahmi Himo (2010). She is currently a Professor and Georgia Research Alliance – Vasser Wooley Chair of Molecular Design at Georgia Tech, a Professor of Structural Biology at Uppsala University, a Fellow of the Royal Society of Chemistry. She has also been a Wallenberg Scholar, the recipient of an ERC Starting Independent Researcher Grant (2012-2017) and the Chair of the Young Academy of Europe (YAE) in 2014-2015. Her non-scientific interests include languages (fluent in 5), amateur photography and playing the piano.

Professor
Fellow of the Royal Society of Chemistry
Phone
(404) 385-6682
Office
MoSE 2120A
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience

Ravi Kane

Ravi Kane
ravi.kane@chbe.gatech.edu

Ravi Kane is the Garry Betty/V Foundation Chair and GRA Eminent Scholar in Cancer Nanotechnology. He received a B.S. in Chemical Engineering from Stanford University in 1993. Also, he received an M.S. in Chemical Engineering Practice and a Ph.D. in Chemical Engineering from MIT, working with Bob Cohen and Bob Silbey. After postdoctoral research with George Whitesides in the Department of Chemistry and Chemical Biology at Harvard University, he joined Rensselaer Polytechnic Institute (RPI) as an assistant professor in 2001. He was promoted to associate professor in 2006, to full professor in 2007, and to the P.K. Lashmet Professor in 2008. He served as the head of RPI’s Howard P. Isermann Department of Chemical and Biological Engineering before moving to Georgia Tech in 2015. Prof. Kane has graduated 27 Ph.D students and contributed to over 130 scientific publications.

Professor
Garry Betty/V Foundation Chair
Georgia Research Alliance Eminent Scholar in Cancer Nanotechnology
Phone
404-385-4608
Office
EBB 5019
Additional Research
Professor Kane's groupconducts research at the interface of biotechnology and nanotechnology.The group is designing nanoscale polyvalent therapeutics and working on the molecular engineering of biosurfaces and nanostructures. A major focus of the group's research involves the design of polyvalent ligands, i.e., nanoscale scaffolds presenting multiple copies of selected biomolecules.The Kane group has made seminal contributions to a fundamental understanding of polyvalent recognition and has designed polyvalent inhibitors that are effectivein vivo.Currently, the group is designing polyvalent molecules that control stem cell fate as well as polyvalent inhibitors of pathogens such as HIV and influenza.The group is also designing nanoscale scaffolds for antigen presentation as part of novel strategies for designing vaccines.The approach could lead to the development of "universal" influenza vaccines as well as effective vaccines targeting RSV and malaria.Other interests of the group involve optogenetics — the development and application of methods that use light to control cell function — as well as the design of enzymes and nanocomposites that target antibiotic-resistant pathogens.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering

King Jordan

King Jordan
king.jordan@biology.gatech.edu

King Jordan is Professor in the School of Biological Sciences and Director of the Bioinformatics Graduate Program at the Georgia Institute of Technology. He has a computational laboratory and his group works on a wide variety of research and development projects related to: (1) human clinical & population genomics, (2) computational genomics for public health, and (3) computational approaches to functional genomics. He is particularly interested in the relationship between human genetic ancestry and health. His lab is also actively engaged in capacity building efforts in genomics and bioinformatics in Latin America. 

Professor
Director, Bioinformatics Graduate Program
Phone
404-385-2224
Office
EBB 2109
Additional Research
Epigenetics ; Computational genomics for public health. We are broadly interested in the relationship between genome sequence variation and health outcomes. We study this relationship through two main lines of investigation - human and microbial.Human:we study how genetic ancestry and population structure impact disease prevalence and drug response. Our human genomics research is focused primarily on complex common disease and aims to characterize the genetic architecture of health disparities, in pursuit of their elimination.Microbial:we develop and apply genome-enabled approaches to molecular typing and functional profiling of microbial pathogens that cause infectious disease. The goal of our microbial genomics research is to empower public health agencies to more effectively monitor and counter infectious disease agents.
IRI and Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences