Annalise Paaby

Annalise Paaby
paaby@gatech.edu

After studying ecology as a biology major at Swarthmore College, Annalise Paaby learned fly pushing as a technician for Steve DiNardo and then discovered evolutionary genetics as a tech for Paul Schmidt. She joined Paul’s lab as a graduate student and earned her Ph.D. from the University of Pennsylvania in 2009. In 2015, Paaby completed her postdoctoral training with Matt Rockman at New York University and began her appointment at Georgia Tech.

Assistant Professor
Phone
404-385-4588
Office
EBB 3011
Additional Research
Our lab explores major questions in evolution and quantitative genetics. We work with the nematode wormC. elegansand relatedCaenorhabditisspecies. Current projects include exploring how cryptic alleles in embryogenesis depend on genetic background, how development evolves over time, and the role of molecular mechanisms in trait determination and evolution. We are also interested in how the environment influences trait expression and imposes selection in natural populations, and are conducting field collection trips in the nearby Appalachian foothills.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

Roberto Pacifici

Roberto Pacifici
roberto.pacifici@emory.edu

The Pacifici laboratory has pioneered the field of osteoimmunology and osteomicrobiology. The current main focus of the laboratory is the role of the microbiome in bone in health and disease. We are also interested in the mechanism of action of probiotics in bone. The laboratory is specialized in conducting in vivo studies in mice treated with PTH or subjected to ovariectomy. We use genetic models, retroviral transduction, bone marrow transplantation, T cell transfer and in vivo treatments with hormones, cytokines, antibodies and probiotics. Typical end points include sophisticated flow cytometric analysis of bone marrow cells and microCT and histomorphometric analysis of bone structure. The lab is equipped with in vivo and in vitro microCT scanners.

We have been the first to recognize that T cells play a pivotal role in the mechanism of action of estrogen and PTH in bone by regulating osteoclast and osteoblast development and function. More recently we have shown that the gut microbiome plays a role in mediating the skeletal response to estrogen deficiency and PTH. We have shown that mice lacking T cells are protected against the bone loss induced by estrogen deficiency and hyperparathyroidism. We have has also shown that T cells regulate the number and function of mesenchymal stem cells. We have investigated the mechanism by which T cells mediate the expansion of hemopoietic stem cells caused by estrogen deficiency and PTH. Another main focus is to understand why intermittent PTH treatment causes bone anabolism while continuous PTH treatment causes bone loss. We hypothesize that the response to PTH depends on the effects of this hormone on T cell production of Wnt10b and TNF. We are currently investigating the mechanism of action of probiotics in bone, and conducting a clinical trial to determine the efficacy of the probiotic VSL#3 in preventing postmenopausal bone loss.

The Pacifici laboratory is currently supported by 3 RO-1 grants, 1 DOD grant and a T32 grant.

Professor
Garland Herndon Professor of Medicine, Emory School of Medicine
Phone
404-712-8420
Office
Emory WMRB 1307
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University > Division of Endocrinology, Metabolism, and Lipids

Adegboyega “Yomi” Oyelere

Adegboyega “Yomi” Oyelere
adegboyega.oyelere@chemistry.gatech.edu

Dr. Adegboyega “Yomi” Oyelere has received PhD from Brown University in 1998. Currently, he works as an associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.

Associate Professor
Phone
404-894-4047
Office
Petit Biotechnology Building, Office 3305
Additional Research
Bioorganic Chemistry, Biochemistry and Drug Design, RNA-Small Molecule Interaction, Targeted Histone Deacetylase (HDAC) Inhibition, Design and Synthesis of Novel Bioconjugates for Molecular Delivery Applications
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Chemistry & Biochemistry

John Oshinski

John Oshinski
jnoshin@emory.edu

Dr. Oshinski is known for his efforts at advancing the collaboration between Emory University and the Georgia Institute of Technology, as well as his dedication to advancing the technologies of MR imaging. He received his undergraduate degree from Kalamazoo College and BS, MS, and PhD from Georgia Institute of Technology. The underlying mission of his research is the application of engineering principles and technical problem-solving techniques to current clinical problems in the imaging, diagnosis, and treatment of cardiovascular disease. His research has concentrated on developing imaging applications that directly impact disease diagnosis and patient care.

Professor, Emory/Georgia Tech Department of Biomedical Engineering
Interim Director, Center for Systems Imaging
Phone
404-727-5894
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University > Department of Radiology and Imaging Sciences

Shoichiro Ono, Ph.D.

Shoichiro Ono, Ph.D.
sono@emory.edu

The Shoichiro's lab primary research interest is the mechanisms that regulate dynamic rearrangement of the actin cytoskeleton during various cellular events including development, cell movement, cytokinesis, and human diseases. We have been studying this problem using the nematode Caenorhabditis elegans as a model system. C. elegans has been used to study many aspects of development, because of its relative simplicity in the body patterning, and application of genetics, molecular biology, biochemistry, and cell biology. We are especially interested in the functions of the actin depolymerizing factor (ADF)/cofilin family of actin-binding proteins, which are required for enhancement of actin filament dynamics. We found that two ADF/cofilin proteins that are generated from the unc-60 gene have different actin-regulating activities. Mutation and expression analyses demonstrated that one of the two ADF/cofilin isoforms (UNC-60B) was specifically required for organized assembly of actin filaments in muscle. ADF/cofilin promotes depolymerization and severing of actin filaments, but tropomyosin inhibits this effect by stabilizing filaments. The other ADF/cofilin isoform (UNC-60A) is highly expressed in early embryos and regulates cytokinesis and embryonic patterning. In addition, we found that actin-interacting protein 1 (AIP1) is a new regulator of muscle actin filaments. AIP1 (UNC-78) specifically interacts with ADF/cofilin-bound actin filaments and enhances filament depolymerization. We also found that the gene product of sup-12 (an RBM24 homolog) regulates alternative splicing of the unc-60 gene and is required for generation of the unc-60B mRNA. We are currently studying functions of these proteins and other regulators of actin dynamics in several developmental aspects in C. elegans.

Associate Professor of Pathology and Laboratory Medicine
Associate Professor of Cell Biology
Phone
404.727.3916
Office
615 Michael Street, Whitehead Biomedical Research Building Room 105N, Atlanta, GA 30322
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Emory University

Shuyi Nie

Shuyi Nie
shuyi.nie@biology.gatech.edu

Dr. Nie received her B.S. degree in Biology from Peking University in China in 2002. In 2007, she received her Ph.D. in Cell Biology from the University of Alabama at Birmingham, where she worked on elucidating signaling pathways in vertebrate gastrulation movements. Thereafter, she conducted postdoctoral research in the laboratory of Marianne Bronner at California Institute of Technology. She joined Georgia Tech in Fall 2014.

Assistant Professor
Phone
404-385-3694
Office
EBB 3009
Additional Research
The fundamental question we are trying to answer is how the coordinated cell movements are regulated during animal development. Different groups of cells move to different locations in a growing embryo to give rise to specific tissue and structures. It is a very complex process since the "ground" cells travel on is also undergoing constant rearrangement and growth. We use neural crest as a model to study the mechanisms of cell migration during embryonic development. The neural crest is a vertebrate innovation, comprised of highly migratory stem-like cells that give rise to multiple tissue and structures, including craniofacial bones and cartilages, connective tissue in the heart, enteric nervous system in the gut, and pigment cells all over the skin. Defects in their proliferation, migration, differentiation, or survival lead to numerous diseases and birth defects, including craniofacial and heart malformations as well as different types of cancer. Ongoing studies aim to uncover how their migration is regulated and how do they achieve such extraordinary migratory abilities.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

T. Richard Nichols

T. Richard Nichols
trn@gatech.edu

T. Richard Nichols received the B.S. degree in biology from Brown University, Providence, RI, USA, in 1969, and the Ph.D. degree in physiology from Harvard University, Cambridge, MA, USA, in 1974. He is currently a Professor in the School of Biological Sciences at the Georgia Institute of Technology.,He is currently a Professor in the School of Biological Sciences at the Georgia Institute of Technology, Atlanta, GA, USA.

Professor
Phone
404-894-3986
Office
555 14th Street NW Room 1352
Additional Research
The work in this laboratory is focused on mechanisms underlying motor coordination in mammalian systems. These mechanisms are to be found in the structure and dynamic properties of the musculoskeletal system as well as in the organization of neuronal circuits in the central nervous system. Our work concerns the interactions between the musculoskeletal system and spinal cord that give rise to normal and abnormal movement and posture, and in the manner in which central pattern-generating networks are modified for specific motor tasks. Our studies have applications in several movement disorders, including spinal cord injury. The experimental approaches span a number of levels, from mechanical studies of isolated muscle cells to kinematic measurements of natural behavior in quadrupeds.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

Farzaneh Najafi

Farzaneh Najafi
fnajafi3@gatech.edu

Overview:
Our brain not only processes sensory signals but also makes predictions about the world. Generating and updating predictions are essential for our survival in a rapidly changing environment. Multiple brain regions including the cerebellum and the cortex are thought to be involved in the processing of prediction signals (aka predictive processing). However, it is not clear what circuit mechanisms and computations underlie predictive processing in each region, and how the cortical and cerebellar prediction signals interact to support cognitive and sensorimotor behavior. Our lab is interested in figuring out these questions by using advanced experimental and computational techniques in systems neuroscience.

Assistant Professor
Phone
2672519137
Office
IBB 3314
Additional Research

Research Interests: Systems and behavioral neuroscience; Computational neuroscience; Predictive processing; Brain area interactions; Cortex and cerebellum; Population coding

IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences

David Myers, Ph.D.

David Myers, Ph.D.
david.myers@emory.edu

David’s varied interests have fueled an unusual educational background that fuses engineering, microsystem design, biology, and clinical research. David received his PhD in mechanical engineering from the University of California at Berkeley, under the tutelage of one of the early microsystems pioneers, Albert P. Pisano, PhD. Driven by a desire to see new types of sensors in the clinic, David undertook a postdoctoral fellowship in biomedical and clinical research with Wilbur A. Lam, MD, PhD, in the Wallace H. Coulter Department of Biomedical Engineering at Emory University and the Georgia Institute of Technology. Working at the intersection of these fields, David has authored or contributed to publications in Nature Materials, Nature Communications, PNAS, and Blood. 

Assistant Professor
Office
Emory University, Health Sciences Research Building, Room E-156
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering