Tabassum Shah

Tabassum Shah
tabassum.shah@rbi.gatech.edu
Research Coordinator I
Phone
(404) 894-9710
Additional Research
Sugars; Lignin & Hemicellulose
IRI and Role
Renewable Bioproducts > Affiliated Faculty
Renewable Bioproducts

Paul Russo

Paul Russo
paul.russo@mse.gatech.edu

Paul S. Russo is a Professor of Materials Science and Engineering with a joint appointment in the School of Chemistry and Biochemistry at the Georgia Institute of Technology with expertise in polymer, biopolymer and particle chemistry.

His research interests are rooted in rodlike polymers, such as plant viruses, cellulose derivatives and aromatic backbone materials. Particular emphasis has been paid to molecular transport in complex fluids containing rods and to related measurement methods. Static and dynamic laser light scattering have been joined by fluorescence photobleaching recovery and pulsed field gradient NMR spectroscopy to measure diffusion in dilute and concentrated solutions, gels, and liquid crystals. Dialysis implementations of these techniques have permitted stability studies of the amyloid protein responsible for Alzheimer’s disease. Other materials of interest include organophilic polypeptides, which have been coupled to silica cores to yield hybrid particles that can carry hydrophobic payloads, such as enzymes. The same particles can also form colloidal crystals and linear arrays. Small-angle x-ray scattering plays a role in the characterization of these materials. Hydrophobic proteins are being used to template the synthesis of polymers in new and unusual shapes and to disperse oil following marine spills.

Professor, Materials Science and Engineering and School of Chemistry and Biochemistry
Hightower Chair in Biopolymers
Phone
404.385.2607
Office
MRDC 3508
Additional Research

Biomaterials; Polymers; Colloids; Biomaterials; Nanocellulose Applications; Biocomposites; New Materials; Cellulosic Nanomaterials; Polymer & Fiber

IRI and Role
Bioengineering and Bioscience > Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Ronald Rousseau

Ronald Rousseau
ronald.rousseau@chbe.gatech.edu
Professor
Cecil J. "Pete" Silas Chair Emeritus
Phone
(404) 894-2868
Additional Research
Separations Technology; Biofuels; Energy & Water; Separation Technologies
IRI and Role
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering

David Rosen

David Rosen
david.rosen@me.gatech.edu

When Dr. Rosen arrived at Georgia Tech, he helped form the Systems Realization Laboratory, along with Drs. Janet Allen, Bert Bras, and Farrokh Mistree. In August 1995, Dr. Rosen was appointed the Academic Director of the Georgia Tech Rapid Prototyping and Manufacturing Institute (RPMI), where he has responsibility for developing educational and research programs in rapid prototyping. In 1998, he was appointed the Director of the RPMI. He began at Tech in Fall 1992 as an Assistant Professor.

Professor
Associate Chair for Administration
Phone
404.894.9668
Office
Callaway Manufacturing Research Center, Room 252
Additional Research
Papermaking; Energy & Water; Separation Technologies; New Materials for 3D Printing; Paper & Board Mechanics; Microfluidics; Computer-Aided Engineering; Design and Manufacturing; Virtual and rapid prototyping; intelligent CAD/CAM/CAE
IRI and Role
Manufacturing > Affiliated Faculty
Renewable Bioproducts > Affiliated Faculty
Manufacturing
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

John Reynolds

John Reynolds
reynolds@chemistry.gatech.edu

John R. Reynolds is a Professor of Chemistry and Biochemistry, and Materials Science and Engineering at the Georgia Institute of Technology with expertise in polymer chemistry and serves as a member of the Center for Organic Photonics and Electronics (COPE). His research interests have involved electrically conducting and electroactive conjugated polymers for over 30 years with work focused to the development of new polymers by manipulating their fundamental organic structure in order to control their optoelectronic and redox properties. His group has been heavily involved in developing new polyheterocycles, visible and infrared light electrochromism, along with light emission from polymer and composite LEDs (both visible and near-infrared) and light emitting electrochemical cells (LECs). Further work is directed to using organic polymers and oligomers in photovoltaic cells.  Reynolds obtained his M.S. (1982) and Ph.D. (1984) degrees from the University of Massachusetts in Polymer Science and Engineering, he has published over 300 peer-reviewed scientific papers, has 15 patents issued and ~25 patents pending, and served as co-editor of the “Handbook of Conducting Polymers” which was published in 2007.  He was awarded the ACS Award in Applied Polymer Science in 2012.  He serves on the editorial board for the journals ACS Applied Materials and Interfaces, Macromolecular Rapid Communications, Polymers for Advanced Technologies, and the Journal of Macromolecular Science, Chemistry.

Professor, Chemistry and Biochemistry and Materials Science and Engineering
Phone
404.385.4390
Office
MoSE 2120B
Additional Research

Organic and Inorganic Photonics and Electronics; Conducting Polymers; LEDs & OLEDs; Materials Synthesis and Processing; Materials discovery; Chemistry; Polymers; Biomaterials

IRI and Role
Renewable Bioproducts > Faculty
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Sciences
Research Areas
Matter and Systems
  • Computing and Communication Technologies

Elsa Reichmanis

Elsa Reichmanis
ereichmanis@chbe.gatech.edu

Elsa Reichmanis is Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University. Prior to joining Lehigh, she was Professor and Pete Silas Chair in Chemical Engineering in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. She started her independent career at Bell Labs where she was Bell Labs Fellow and Director of the Materials Research Department. She received her PhD and BS degrees in chemistry from Syracuse University. Her research interests include the chemistry, properties, and application of materials technologies for photonic and electronic applications. She has had impact in the design of new imaging chemistries for advanced lithographic applications, and designed one of the first readily accessible and manufacturable polymers for advanced silicon device manufacturing using 193 nm lithography. 

The Reichmanis research group is currently exploring polymeric and hybrid organic/inorganic materials chemistries for a range of device and electronic and sustainable energy applications. Her research, at the interface of chemical engineering, chemistry, materials science, optics, and electronics, spans from fundamental concept to technology development and implementation, with particular focus on polymeric and nanostructured materials for advanced technologies. Currently, efforts aim to identify fundamental parameters that will enable sub-nanometer scale dimensional control of organic, polymer and/or hybrid materials for applications including transistor devices, photovoltaics, and high-capacity energy storage. 

Reichmanis was elected to the National Academy of Engineering in 1995 and has participated in several National Research Council (NRC) activities. She was an elected member of the Bureau of the International Union for Pure and Applied Chemistry (IUPAC); and has been active in the American Chemical Society throughout her career, having served as 2003 President of the Society. Elsa Reichmanis is the recipient of several awards, including the ACS Award in the Chemistry of Materials (2018), the ACS Award in Applied Polymer Science (1999), the ASM Engineering Materials Achievement Award (1996), and the Society of Chemical Industry’s Perkin Medal (2001). In other service, she is an Executive Editor of the ACS Journal Chemistry of Materials. 

The Reichmanis Group works at the interface of chemical engineering, chemistry, materials science, optics, and electronics spanning the range from fundamental concept to technology development and implementation. Research interests include the chemistry, properties and applications of materials technologies for electronic and photonic applications, with particular focus on polymeric and nanostructured materials for advanced technologies. in paper-based battery applications as well. 

Professor Emeritus
Phone
(404) 894-0316
Additional Research
Energy Storage; Solar; Biochemicals; Chemical Feedstocks; New Materials; Coatings & Barriers; Biorefining; Energy & Water; Biomaterials
IRI and Role
Renewable Bioproducts > Affiliated Faculty
Energy > Research Community
Sustainable Systems
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering
Research Areas
Sustainable Systems
  • Resource and Materials Use

Matthew Realff

Matthew Realff
matthew.realff@chbe.gatech.edu

Dr. Realff’s broad research interests are in the areas of process design, simulation, and scheduling. His current research is focused on the design and operation of processes that minimize waste production by recovery of useful products from waste streams, and the design of processes based on biomass inputs. In particular, he is interested in carbon capture processes both from flue gas and dilute capture from air as well as the analysis and design of processes that use biomass.

Professor
David Wang Sr. Fellow
Associate Director, RBI
SEI Lead: Circular Carbon Economy; RBI Lead: Next Generation Refinery
Phone
(404) 894-1834
Additional Research
Biofuels; Carbon Capture; Separations Technology; System Design & Optimization; SMART Manufacturing; Energy & Water; Separation Technologies; Biochemicals; Chemical Feedstocks; Sugars; Lignin & Hemicellulose; Biofuels
IRI and Role
Renewable Bioproducts > Faculty
Renewable Bioproducts > Leadership
Energy > Fellow
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering

H. Jerry Qi

H. Jerry Qi
qih@me.gatech.edu

H. Jerry Qi is a professor and the Woodruff Faculty Fellow in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. He received his bachelor degrees (dual degree), master and Ph.D. degree from Tsinghua University (Beijing, China) and a ScD degree from Massachusetts Institute of Technology (Boston, MA, USA). After one year postdoc at MIT, he joined University of Colorado Boulder as an assistant professor in 2004, and was promoted to associate professor with tenure in 2010. He joined Georgia Tech in 2014 as an associate professor with tenure and was promoted to a full professor in 2016. Qi is a recipient of NSF CAREER award (2007). He is a member of Board of Directors for the Society of Engineering Science. In 2015, he was elected to an ASME Fellow. The research in Qi's group is in the general area of soft active materials, with a focus on 1) 3D printing of soft active materials to enable 4D printing methods; and 2) recycling of thermosetting polymers. The material systems include: shape memory polymers, light activated polymers, vitrimers. On 3D printing, they developed a wide spectrum of 3D printing capability, including: multIMaTerial inkjet 3D printing, digit light process (DLP) 3D printing, direct ink write (DIW) 3D printing, and fused deposition modeling (FDM) 3D printing. These printers allow his group to develop new 3D printing materials to meet the different challenging requirements. For thermosetting polymer recycling, his group developed methods that allow 100% recycling carbon fiber reinforced composites and electronic packaging materials. Although his group develops different novel applications, his work also relies on the understanding and modeling of material structure and properties under environmental stimuli, such as temperature, light, etc, and during material processing, such as 3D printing. Constitutive model developments are typically based on the observations from experiments and are then integrated with finite element through user material subroutines so that these models can be used to solve complicated 3D multiphysics problems involving nonlinear mechanics. A notable example is their recent pioneer work on 4D printing, where soft active materials is integrated with 3D printing to enable shape change (or time in shape forming process). Recently, his developed a state-of-the-art hybrid 3D printing station, which allows his group to integrate different polymers and conduct inks into one system. Currently, his group is working on using this printing station for a variety of applications, including printed 3D electronics, printed soft robots, etc.

Professor, Woodruff School of Mechanical Engineering
Woodruff Faculty Fellow, Woodruff School of Mechanical Engineering
Phone
404.385.2457
Office
MRDC 4104
Additional Research

Additive/Advanced Manufacturing; micro and nanomechanics; Recycling; Soft Materials; Conducting Polymers

IRI and Role
Bioengineering and Bioscience > Faculty
Renewable Bioproducts > Faculty
Matter and Systems > Affiliated Faculty
Bioengineering and Bioscience
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering
Research Areas
Matter and Systems
  • Frontiers in Infrastructure

Joseph Perry

Joseph Perry
joe.perry@chemistry.gatech.edu
Professor
Phone
(404) 385-6046
Additional Research
Analytical Chemistry; Characterization; Energy; Sustainability; Materials Chemistry; Molecular Biophysics; Nanoscience and Technology; Physical Chemistry; Polymer Chemistry; Spectroscopy; Surface and Interfacial Chemistry; Theory and Modeling
IRI and Role
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Chemistry & Biochemistry

Pamela Peralta-Yahya

Pamela Peralta-Yahya
pperalta-yahya@chemistry.gatech.edu

Peralta-Yahya has been part of Georgia Tech since 2012. Her diverse research group composed of chemists, biologists, and chemical engineers works in the area of engineering biology, drawing from principles of biochemistry and engineering to build systems for chemical detection and production. Specifically, her group focuses on the development of G protein-coupled receptors for biotechnology and biomedical applications, and the engineering of biological systems for the production of fuels and functionalized plant natural products. Early on, her work was recognized with several awards including a DARPA Young Faculty Award, a DuPont Young Professor Award, a Kavli Fellowship by the US Academy of Science, and an NIH MIRA award. Her group’s key accomplishments are 1) the standardization of GPCR-based sensors in yeast to reduce the cost and accelerate the pace of drug discovery for these receptors, which are the target of over 30% of FDA approved drugs, and 2) the development of advanced biofuels, including pinene, which, when dimerized, has sufficient energy content to power rockets and missiles.  Today, her group is funded to work on these and other cutting edge areas – including how to power a rocket returning from Mars and how to make synthetic cells learn without evolution – by the National Institutes of Health, the National Science Foundation, the Department of Energy, and NASA.

Associate Professor, School of Chemistry and Biochemistry
Phone
404.894.4228
Office
MoSE 2100P
Additional Research

Bio-Inspired Materials; Biofuels; Cell biophysics; Cellular Materials; Biochemistry; Biomanufacturing; Energy; Biomaterials

IRI and Role
Bioengineering and Bioscience > Faculty
Renewable Bioproducts > Affiliated Faculty
Energy > Faculty Council
Energy > Research Community
Bioengineering and Bioscience
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering