Richard Neu

Richard Neu
rick.neu@me.gatech.edu

Neu's research involves the understanding and prediction of the fatigue behavior of materials and closely related topics, typically when the material must resist degradation and failure in harsh environments. Specifically, he has published in areas involving thermomechanical fatigue, fretting fatigue, creep and environmental effects, viscoplastic deformation and damage development, and related constitutive and finite-element modeling with a particular emphasis on the role of the materials microstructure on the physical deformation and degradation processes. He has investigated a broad range of structural materials including steels, titanium alloys, nickel-base superalloys, metal matrix composites, molybdenum alloys, high entropy alloys, medical device materials, and solder alloys used in electronic packaging. His research has widespread applications in aerospace, surface transportation, power generation, machinery components, medical devices, and electronic packaging. His work involves the prediction of the long-term reliability of components operating in extreme environments such as the hot section of a gas turbine system for propulsion or energy generation. His research is funded by some of these industries as well as government funding agencies.

Professor School of Materials Science and Engineering and Woodruff School of Mechanical Engineering
Director, Mechanical Properties Characterization Facility
IMS Initiative Lead, Materials in Extreme Environments
Phone
404.894.3074
Office
MRDC 4104
Additional Research

Nanomaterials; micro and nanomechanics; Thermoelectric Materials; fracture and fatigue

IRI/Group and Role
Matter and Systems > Affiliated Faculty
Energy > Research Community
Energy > Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies
Energy
  • Combustion, Propulsion, and Hypersonics
  • Advanced Manufacturing for Energy
  • Nuclear
  • Built Environment
  • Water, Wind, and Solar

Sankar Nair

Sankar Nair
sankar.nair@chbe.gatech.edu
Professor, School of Chemical and Biomolecular Engineering
James F. Simmons Faculty Fellow, School of Chemical and Biomolecular Engineering
Associate Chair for Industry Outreach, School of Chemical and Biomolecular Engineering
Phone
404.894.4826
Office
ES&T 2224
Additional Research

Nanomaterials; Biofuels; Carbon Capture; Catalysis; Separations Technology; Chemical Recovery; Energy & Water

IRI/Group and Role
Renewable Bioproducts > Affiliated Faculty
Energy > Hydrogen Group
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering

Christopher Muhlstein

Christopher Muhlstein
christopher.muhlstein@mse.gatech.edu

Muhlstein has worked as an engineering consultant at Exponent, Inc. (Failure Analysis Associates). In September, 2002 he joined the faculty in the Department of Materials Science and Engineering at The Pennsylvania State University and was tenured and promoted to associate professor in 2008.

 Muhlstein’s research focuses on understanding the mechanisms of fracture and fatigue in bulk and thin film materials. Muhlstein is a member of Alpha Sigma Mu and Keramos honor societies and an NSF CAREER award recipient. In 2007 he was also named the Corning Research Faculty Fellow in Materials Science and Engineering at The Pennsylvania State University. 

Associate Professor, School of Materials Science and Engineering
Associate Director, MPRL
Phone
404.385.1235
Office
Love 274
Additional Research

Fracture and Fatigue; Thin Films; Polymeric Composites; Advanced Characterization; Nanomaterials; Structural Materials; Paper & Board Mechanics; Biomaterials; Nanocellulose Applications; Biocomposites; New Materials

IRI/Group and Role
Renewable Bioproducts > Affiliated Faculty
Manufacturing > Affiliated Faculty
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

J. Carson Meredith

J. Carson Meredith
carson.meredith@chbe.gatech.edu

Meredith is the Executive Director of the Georgia Tech Renewable Bioproducts Institute, and the James Harris Faculty Fellow in ChBE.

Meredith's group researches the surfaces and interfaces of advanced materials. Their work aims to apply fundamentals of polymer, surface and colloid science to find new ways to engineer materials useful to society and industry. In particular, projects emphasize the utilization of renewable components and sustainable processing to achieve circular manufacturing and use of plastics, composites, foams and coatings, among others. Many of these materials are critical for food security, energy efficiency, and are closely connected to greenhouse gas reduction.

Executive Director of the Renewable Bioproducts Institute
Professor and James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering
Phone
404.385.2151
Office
ES&T 1212
Additional Research

Catalysis; Cellulosic Nanomaterials; Separation Technologies; Nanocellulose Applications; Aerogels & Hydrogels; Films & Coatings; Coatings & Barriers; Biomaterials

IRI/Group and Role
Renewable Bioproducts > Faculty
Renewable Bioproducts > Leadership
Energy > Research Community
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering

Mike Leamy

Mike  Leamy
michael.leamy@me.gatech.edu
Associate Professor
Phone
(404) 385.2828
Additional Research

Electric Vehicles; Acoustics and Dynamics; computational mechanics; Multiscale Modeling; Nanostructured Materials; Metamaterials

IRI/Group and Role
Energy > Research Community
Matter and Systems > Affiliated Faculty
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering
Research Areas
Matter and Systems
  • Computing and Communication Technologies

Kimberly Kurtis

Kimberly Kurtis
kimberly.kurtis@ce.gatech.edu

Kimberly (Kim) E. Kurtis is a professor in the School of Civil and Environmental Engineering at Georgia Institute of Technology. She has served as associate dean of faculty development and scholarship in the College of Engineering since 2014 and was interim chair of the School for the 2017-2018 academic year. Kurtis earned her BSE in civil engineering from Tulane University under a Deans Honor Scholarship and her Ph.D. in civil engineering from the University of California at Berkeley, where she was a Henry Hilp Fellow and a National Science Foundation (NSF) Fellow.  

Kurtis’s innovative research on the multi-scale structure and performance of cement-based materials has resulted in more than 100 technical publications and two US patents. In addition to her technical and educational service contributions at the American Concrete Institute (ACI), American Ceramics Society (ACerS), Portland Cement Association (PCA), Transportation Research Board (TRB), American Association of State and Highway Transportation Officials (AASHTO), and Federal Highway Administration (FHWA), she has held two leadership positions – Chairman of ACI Committee 236: Materials Science of Concrete (2006-2012) and Chair of American Ceramic Society’s Cements Division (2008-2009) – central to advancing science-based research on cement-based materials. Dr. Kurtis has served as Associate Editor of ASCE Journal of Materials in Civil Engineering and as an Editorial Board member of Cement and Concrete Composites. Having previously served six years on ACI's Educational Activities Committee (EAC), she is currently appointed to ACI's 12-member Technical Activities Committee, which oversees development of ACI standards, technical committee activities, and technical content presented at ACI conventions and in archival publications. Since 2018, she has been Trustee at the ASCE Foundation, representing District 5. 

She has been honored with ACI ’s Walter P. Moore, Jr. Faculty Achievement Award (2005), ACI’s Del Bloem Award for Service (2013), Outstanding Senior Undergraduate Research Mentor Award at Georgia Institute of Technology (2013), the ACI James Instruments Award for Research on NDE of Concrete (2008), Award for Outstanding Article in ASTM’s Journal of Testing and Evaluation (2010), and ASCE’s Huber Civil Engineering Research Prize (2013). Kurtis is a Fellow of the American Concrete Institute and the American Ceramics Society. 

Professor, School of Civil and Environmental Engineering
Associate Dean for Faculty Development and Scholarship, College of Engineering
Phone
404.385.0825
Office
Mason 4154
Additional Research

Structural Materials; Sustainable Communities; Composites; Structural Health Monitoring

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Civil and Environmental Engineering

Mijin Kim

Mijin Kim
mkim445@gatech.edu

Mijin Kim is an assistant professor in the School of Chemistry and Biochemistry at Georgia Tech. Her research program is focused on the development and implementation of novel nanosensor technology to improve cancer research and diagnosis. The Kim Lab combines nanoscale engineering, fluorescence spectroscopy, machine learning approaches, and biochemical tools (1) to understand the exciton photophysics in low-dimensional nanomaterials, (2) to develop diagnostic/nano-omics sensor technology for early disease detection, and (3) to investigate biological processes with focusing problems in lysosome biology and autophagy. For her scientific innovation, Kim has received multiple recognitions, including being named as one of the STAT Wunderkinds and the MIT Technology Review Innovators Under 35 List.

Assistant Professor, School of Chemistry and Biochemistry
IRI/Group and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
Research Areas
Artificial Intelligence

George Kardomateas

George Kardomateas
george.kardomateas@aerospace.gatech.edu

Kardomateas has twenty five years of research experience in the mechanics of structures and materials, both advanced (composite) and conventional (metallic). He is the author (together with R.L. Carlson) of the book: An Introduction to Fatigue in Metals and Composites, published by Chapman and Hall, 1996, the editor of three volumes published by the Applied Mechanics Division of the ASME (American Society of Mechanical Engineers) as well as the author of about one hundred refereed journal papers, about one hundred conference proceedings papers and over twenty articles published as parts of books. He has served as the elected chairman of the Applied Mechanics Division Composites Committee of ASME and the Program Representative of the Aerospace Division Structures and Materials Committee of the ASME. Kardomateas has served as an Associate Editor of the AIAA Journal, has also served in the AIAA Technical Committee on Structures and as a Contributing Editor of the International Journal of Non-Linear Mechanics. Following his Ph.D. studies, he assumed the position of Senior Research Engineer in the General Motors Research Laboratories, conducting industrial research in the emerging at that time field of advanced composites. In January 1989, Kardomateas joined the academic faculty at the Georgia Institute of Technology as an Assistant Professor and was promoted to the rank of Associate Professor in 1992 and to the rank of Professor in 1997. Over the last seventeen years, Kardomateas has been the principal investigator and project director of Academic Grants sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Office, the Federal Aviation Administration and the National Rotorcraft Technology Center as well as of Research Contracts sponsored by the US Air Force Warner Robins Air Logistics Center, Sikorsky Aircraft and General Motors Corp. in the field of fracture/fatigue/structural behavior in both advanced composite and conventional metallic materials and structures. Kardomateas' research has been published in highly respected journals in the Mechanics area, such as the Journal of Applied Mechanics, the Journal of the Mechanics and Physics of Solids, the AIAA Journal, the International Journal of Fracture, the International Journal of Solids and Structures, the Philosophical Magazine, etc.

Professor, School of Aerospace Engineering
Phone
404.894.8198
Office
SST/Weber 200-B
Additional Research

Composites; fracture and fatigue; micro and nanomechanics

University, College, and School/Department
Georgia Institute of Technology > College of Engineering

Kyriaki Kalaitzidou

Kyriaki Kalaitzidou
kyriaki.kalaitzidou@me.gatech.edu

Kalaitzidou joined Georgia Tech as an assistant professor in the G.W. Woodruff School of Mechanical Engineering in November of 2007. She also holds an adjunct appointment in the School of Materials Science and Engineering. She obtained her Ph.D. in manufacturing and characterization of polymer nanocomposites (PNCs) from Michigan State University and worked as a post-doctoral researcher on mechanics of soft materials in the Polymer Science and Engineering Department at University of Massachusetts, Amherst. She was promoted to professor in 2019 and was also named a Rae S. and Frank H. Neely Professor in the same year. In November 2019 Kalaitzidou was named the Associate Chair for Faculty Development.

Rae S. and Frank H. Neely Professor, Woodruff School of Mechanical Engineering
Associate Chair for Faculty Development, Woodruff School of Mechanical Engineering
IMat Initiative Lead | Circularity of Biopolymers
Phone
404.385.3446
Office
MARC Building Room 38
Additional Research

Additive/Advanced Manufacturing; multifunctional materials; Nanocomposites; Polymers; Surfaces and Interfaces; Manufacturing; Mechanics of Materials; Biomaterials

IRI/Group and Role
Renewable Bioproducts > Affiliated Faculty
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering