Angus Wilkinson

Angus Wilkinson
angus.wilkinson@chemistry.gatech.edu

Angus Wilkinson is a professor in the School of Chemistry and Biochemistry and holds a joint appointment with the School of Materials Science and Engineering. Wilkinson obtained his bachelors degree in chemistry from Oxford University in 1988. He was a graduate student with A. K. Cheetham in the Department of Chemical Crystallography /Inorganic Chemistry at Oxford from 1988 until December 1991. His graduate work focused on the application of synchrotron X-ray powder diffraction to problems in solid-state chemistry. 

For the last two years of his graduate studies he held a senior Scholarship from Christ Church, Oxford. From October 1991 until June 1993, Wilkinson was a Junior Research Fellow with Christ Church, Oxford. However, most of this period was spent on leave at the Materials Research Laboratory, University of California Santa Barbara. His work in Santa Barbara focused on the processing and structure of oxide ferroelectric materials. In October 1993 he joined the faculty at the Georgia Institute of Technology as an assistant professor. He received tenure in 1999 and was promoted to full professor in 2004. He is currently Associate Chair for operations in the School of Chemistry and Biochemistry. 

His work at Georgia Tech has been wide ranging. Current projects include the synthesis and characterization of negative thermal expansion ceramics, in-situ studies of cement hydration under oil well conditions (high pressure and temperature) using x-ray and ultrasonic techniques, and the development of reversible carbon dioxide adsorbents. Previous work at Georgia Tech has included an exploration of chiral templates for the synthesis of chiral microporous materials, the low temperature synthesis of ferroelectrics, an exploration of low oxidation state gallium and indium oxide chemistry with a view to finding new ferroelectric and nonlinear optical materials, the development of resonant x-ray scattering methods for use on thermoelectric energy conversion materials, and an examination of cement durability under sulfate attack conditions using high energy x-ray scattering combined with microtomography.

Professor, School of Chemistry and Biochemistry and School of Materials Science and Engineering
Associate Chair for Operations and Undergraduate Programs
Phone
404.894.4036
Office
MoSE 1100J
Additional Research

Thermoelectric Materials; Metal-Organic Frameworks; Modeling

University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Chemistry & Biochemistry
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Yang Wang

Yang Wang
yang.wang@ce.gatech.edu

Yang Wang joined Georgia Tech faculty in 2007. With a B.E. and an M.S. degree in civil engineering awarded by Tsinghua University in Beijing, China, he received a Ph.D. in civil engineering at Stanford University in 2007, as well as an M.S. in electrical engineering. Wang’s research interests include structural health monitoring and damage detection, decentralized structural control, wireless and mobile sensors, and structural dynamics. He received an NSF Early Faculty Career Development (CAREER) Award in 2012 and a Young Investigator Award from the Air Force Office of Scientific Research (AFOSR) in 2013. Wang is the author and coauthor of over 100 journal and conference papers, and currently serves as an associate editor for the ASCE (American Society of Civil Engineers) Journal of Bridge Engineering.

Professor, School of Civil and Environmental Engineering and Electrical and Computer Engineering
Phone
404.894.1851
Office
Mason 322-C
Additional Research

Structural Health Monitoring; Structural Materials; Materials Failure and Reliability

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Civil and Environmental Engineering

Vladimir Tsukruk

Vladimir Tsukruk
vladimir@mse.gatech.edu

Vladimir V. Tsukruk is a Dean’s Distinguished Professor of Engineering at the School of Materials Science and Engineering, Georgia Institute of Technology, a founding Director of Microanalysis Center, and founding co-director of DoD BIONIC Center of Excellence.  He received MS degree in physics from the National University of Ukraine, PhD in polymer science and DSc in chemistry from the National Academy of Sciences of Ukraine. He carried out his post-doc research at the U. Marburg, Darmstadt TU, and U. Akron.

He serves on the Editorial Advisory Boards of ten professional journals and as an Associate Editor at ACS Applied Materials and Interfaces. He has co-authored more than 400 refereed articles in archival journals and five books, which have been cited more than 15,500 times with H-index of 60 (WoS).  He has organized ten professional symposia and trained about 70 students currently employed in industry, academia, and national labs.  His research in the field of surfaces, interfaces, directed assembly of synthetic/natural polymers and nanostructures, and bioinspired hybrid nanomaterials has been recognized by The Georgia Tech Outstanding Research Author Award (2015), the Humboldt Lectureship (2011), Humboldt Research Award (2010) and the National Science Foundation Special Creativity Award (2006) among others.

Regents' Professor, School of Materials Science and Engineering
Phone
404.894.6081
Office
M Building 3100M
Additional Research

Bio-Inspired Materials; Surfaces and Interfaces; Biomolecular-Solids; Optical Materials; Smart materials. Bionanocomposites, hybrid nanomaterials, optically active materials, photonic materials, responsive materials, and sensors.

IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Zhaohui (Julene) Tong

Zhaohui (Julene) Tong
zt7@gatech.edu

The Tong Lab tackles challenges in the interdisciplinary areas of bioresource engineering and sustainable chemistry. We develop innovative technologies for producing chemicals, materials, energy, and fuels from renewable resources.

Current research interests include:

  • Functional biomaterials for high-efficiency circular economy
  • Platform chemicals and hydrocarbon fuels from renewable resources
  • Sustainable process control and modeling
  • Nano-biomaterial synthesis and self-assembling
  • Polymer degradation and recycling

Disciplines:

  • Materials and Nanotechnology

  • Energy and Sustainability

Associate Professor
RBI Lead: Waste Valorization in Food-Energy-Water
Phone
404.894.3098
Office
ES&T 2226
IRI and Role
Sustainable Systems > Fellow
Renewable Bioproducts > Faculty
Renewable Bioproducts > Leadership
Energy > Research Community
Sustainable Systems
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Chemical and Biomolecular Engineering
Research Areas
Sustainable Systems
  • Resource and Materials Use

Naresh Thadhani

Naresh Thadhani
naresh.thadhani@mse.gatech.edu

Thadhani joined the faculty in the School of Materials Science and Engineering at Georgia Tech in September, 1992. His research focuses on studies of shock-induced physical, chemical, and mechanical changes for processing of novel materials and for probing the deformation and fracture response of metals, ceramics, polymers, and composites, subjected to high-rate impact loading conditions. He has developed state-of-the-art high-strain-rate laboratory which includes 80-mm and 7.62-mm diameter single-stage gas-guns, and a laser-accelerated thin-foil set-up, to perform impact experiments at velocities of 70 to 1200 m/s. The experiments employ time-resolved diagnostics to monitor shock-initiated events with nanosecond resolution employing piezoelectric and piezoresistive stress gauges, VISAR interferometry, Photonic-doppler-velocimetry, and high-speed digital imaging, combined with the ability to recover impacted materials for post-mortem microstructural characterization and determination of other properties. He has built computational capabilities employing continuum simulations for design of experiments and development and validation of constitutive equations, as well as for meso-scale discrete particle numerical analysis (using CTH and ALE3D codes) to determine the effects observed during shock compression of heterogeneous materials, using real microstructures.

Professor and Chair, School of Materials Science and Engineering
Phone
404.894.2651
Office
Love 286
Additional Research

deformation and degradation; fracture and fatigue; Ceramics; Materials Failure and Reliability; Materials In Extreme Environments; Materials Testing

IRI and Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies

Lauren Stewart

Lauren Stewart
lauren.stewart@ce.gatech.edu

Lauren Stewart joined the Georgia Institute of Technology, Civil & Environmental Engineering faculty as an assistant professor in August 2013. She was promoted to Associate Professor, with tenure in 2019. She received her B.S. in Structural Engineering from the University of California, San Diego in 2004 and her Ph.D. in Structural Engineering also from the University of California, San Diego in 2010. She is a National Defense Science and Engineering Graduate Fellow, an US Air Force Summer Faculty Fellow, and a 2017 Rising Star in Structural Engineering. Prior to coming to Georgia Tech, Stewart was a Post Doctoral Scholar at the University of California, San Diego from 2010 to 2013. From 2006 to 2013, she worked a Senior Blast Engineer at Karagozian & Case Structural Engineers in California where she holds a PE license.

Stewart’s research is focused on experimental methods for characterized the response of structures to natural and manmade hazards. She has been involved with many blast, shock, impact and seismic experimental and computational programs. These including blast testing of steel structural columns, blast testing of steel stud wall systems, material testing for ultra high performance concrete for impulsive loads and seismic testing for Los Alamos National Laboratories. She has also conducted advanced finite element analysis for the World Trade Center 7 Collapse, AFRL Munitions Directorate small munitions program and programs supported by the Technical Support Working Group. Her design experience includes blast analysis for the Veterans Affairs and consulting projects for various companies.

Associate Professor, School of Civil and Environmental Engineering
Director, Structural Engineering and Materials Laboratory
Phone
404.385.1919
Office
Mason 3141A
Additional Research

computational mechanics; Materials In Extreme Environments; Materials Failure and Reliability; Structural Materials

University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Civil and Environmental Engineering

Aaron Stebner

Aaron Stebner
aaron.stebner@gatech.edu

Aarn Stebner works at the intersection of manufacturing, machine learning, materials, and mechanics. He joined the Georgia Tech faculty as an associate professor of Mechanical Engineering and Materials Science and Engineering in 2020.

Previously, he was the Rowlinson Associate Professor of Mechanical Engineering and Materials Science at the Colorado School of Mines (2013 – 2020), a postdoctoral scholar at the Graduate Aerospace Laboratories of the California Institute of Technology (2012 – 2013), a Lecturer in the Segal Design Institute at Northwestern University (2009 – 2012), a Research Scientist at Telezygology Inc. establishing manufacturing and “internet of things” technologies for shape memory alloy-secured latching devices (2008-2009), a Research Fellow at the NASA Glenn Research Center developing smart materials technologies for morphing aircraft structures (2006 – 2008), and a Mechanical Engineer at the Electric Device Corporation in Canfield, OH developing manufacturing and automation technologies for the circuit breaker industry (1995 – 2000).

Associate Professor, School of Mechanical Engineering and Materials Science and Engineering
Phone
404.894.5167
IRI and Role
Manufacturing > Affiliated Faculty
Manufacturing > AMPF
Data Engineering and Science > Faculty
Manufacturing
Data Engineering and Science
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Frontiers in Infrastructure
  • Computing and Communication Technologies

Robert F. Speyer

Robert F. Speyer
robert.speyer@mse.gatech.edu

Speyer joined the MSE faculty in August, 1992 after serving on the faculty at the New York State College of Ceramics at Alfred University for six years.  He has written one book (Thermal Analysis of Materials), with another one on the way, published over 125 refereed papers and has given over 150 technical presentations.

His present research group consists of seven graduate students and one Ph.D-level scientist. Dr. Speyer’s research has been funded by Navy, ARO, AFOSR, DARPA, Gas Research Institute, and private industry.  He was previously the president of Innovative Thermal Systems, a thermoanalytical scientific instrument company, and is presently the President of Verco Materials, a start-up company which will manufacture boron carbide armor .

He teaches courses in Chemical Thermodynamics of Materials, Thermal and Transport Properties of Materials, and Ceramic Technology.

Professor, School of Materials Science and Engineering
Phone
404.894.6075
Office
Love 260
Additional Research

Thermal management; Ceramics; Modeling; Fabrication

IRI and Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies

Preet Singh

Preet Singh
preet.singh@mse.gatech.edu

Prior to joining MSE in July 2003 Professor Singh was a faculty member in Corrosion and Materials Engineering Group at The Institute of Paper Science and Technology (IPST) since 1996.  While in IPST Singh worked on fundamental as well as applied research projects related to the corrosion problems in the pulp and paper industry. From 1990 to 1996, he was a Senior Research Associate at Case Western Reserve University, Cleveland, Ohio, working on various materials and corrosion related research projects, including damage accumulation in metal matrix composites (MMCs), Environmental sensitive fracture of Al-alloys MMCs, and High temperature oxidation of Nb/Nb5Si3 composites. He received the Alcan International's Fellowship in 1988-90 to work on "Effects of Low Melting Point Impurities on Slow Crack Growth in Al Alloys,"  He has published over 50 papers in reputed scientific journals and conference proceedings. He is active member of NACE, TMS, TAPPI and has co-organized a number of international symposiums.

Reliable performance of the materials is very important for any industrial process and especially for the chemical process industry for the manufacture of a high quality product. Material selection is generally based on the required material properties, low initial capital investment, and minimum maintenance. Changes in the process parameters to improve products can often lead to higher corrosion susceptibilities of the plant materials. Moreover, with increase in capital cost, there is pressure to extend the life of existing plant equipment beyond its original design life. Corrosion and Materials Engineers are also playing a key role in selecting, maintaining, and modifying materials for changing needs for every industry. Corrosion Science and Engineering research includes understanding the basic mechanisms involved in material degradation in given environments and using that knowledge to develop a mitigation strategy against environment-induced failures

Professor, School of Materials Science and Engineering
Associate Chair of Graduate Studies, School of Materials Science and Engineering
Phone
404.894.6641
Office
IPST 246
Additional Research

Composites; fracture and fatigue; stress corrosion; Materials Failure and Reliability; Biofuels; Chemical Recovery; Environmental Processes; Sustainable Manufacturing; Energy & Water; Corrosion & Reliability

IRI and Role
Renewable Bioproducts > Faculty
Energy > Research Community
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering
Research Areas
Matter and Systems
  • Built Environment Technologies

Meisha Shofner

Meisha Shofner
meisha.shofner@mse.gatech.edu

Meisha L. Shofner is a professor in the School of Materials Science and Engineering at Georgia Institute of Technology, joining the faculty following post-doctoral training at Rensselaer Polytechnic Institute. She received her B.S. in Mechanical Engineering from The University of Texas at Austin and her Ph.D. in Materials Science from Rice University. Prior to beginning graduate school, she was employed as a design engineer at FMC in the Subsea Engineering Division, working at two plant locations (Houston, Texas and the Republic of Singapore), and she is a registered Professional Engineer in Georgia.

Shofner’s research area is processing-structure-property relationships of polymers and composites. Specifically, she designs processing strategies to attain hierarchical structures in these materials to improve properties and has discovered scalable processing methods to produce auxetic structures and tensegrity-inspired structures. Additionally, she works with bioderived materials to produce composites with reduced environmental impact.  

Professor, School of Materials Science and Engineering
Phone
404.385.7216
Office
MRDC 4409
Additional Research

Biomolecular-Solids; Biomaterials; Composites; Polymers; Nanomaterials; Biofuels; Structure-property relationships in polymer nanocomposite materials; producing structural hierarchy in these materials for structural and functional applications.

IRI and Role
Manufacturing > Affiliated Faculty
Data Engineering and Science > Affiliated Faculty
Renewable Bioproducts > Faculty
Energy > Research Community
Manufacturing
Data Engineering and Science
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering