Stephen Diggle
Associate Professor

I graduated in Biological Sciences (B.Sc, University of Salford, 1997) prior to undertaking a Ph.D in molecular microbiology studying quorum sensing in Pseudomonas aeruginosa (University of Nottingham, 2001). I worked as a Postdoctoral Fellow at Nottingham on both EU and BBSRC funded grants, before obtaining a Royal Society University Fellowship (2006-2014). I was promoted to Associate Professor in 2013. In 2017 I moved as an Associate Professor to the School of Biological Sciences at Georgia Tech. I was promoted to Full Professor in 2022. I was appointed as the Director of the Center for Microbial Dynamics and Infection in January 2023. 

I currently serve as the Deputy Editor in Chief of Microbiology, where I have previously served as editor and senior editor. I have also previously served on the editorial boards of FEMS Microbiology Letters, BMC Microbiology, Microbiology Open and Royal Society Open Science. I was an elected member of the Microbiology Society Council (2012-2016) and also served on their conference and policy committees. I was selected to be an American Society for Microbiology Distinguished Lecturer (2021-2023) and was elected to the American Academy of Microbiology in 2023. 

In my spare time I play bass guitar. I recorded some original music in a band called Meaner and I currently play in a covers band called The Variants of Concern. I also have a long-standing interest in the works of J.R.R. Tolkien.

stephen.diggle@biosci.gatech.edu
Phone
404-385-5634
Office
Cherry Emerson A110
University, College, and School/Department
Georgia Institute of Technology > College of Sciences > School of Biological Sciences
Additional Research
I am interested in cooperation and communication in microbes and how these are related to virulence, biofilms and antimicrobial resistance. I have a long standing interest in understanding how the opportunistic pathogen Pseudomonas aeruginosa causes disease, and am especially interested in how this organism evolves during chronic infections such as those found in cystic fibrosis lungs and chronic wounds.
IRI and Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience